本文整理匯總了Python中numpy.cbrt方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.cbrt方法的具體用法?Python numpy.cbrt怎麽用?Python numpy.cbrt使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類numpy
的用法示例。
在下文中一共展示了numpy.cbrt方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _no_extrapolation_hessian
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import cbrt [as 別名]
def _no_extrapolation_hessian(internal_func, params_value, method):
finite_diff = getattr(aux, method)
hess = np.empty((len(params_value), len(params_value)))
for i, val_1 in enumerate(params_value):
h_1 = (1.0 + abs(val_1)) * np.cbrt(np.finfo(float).eps)
for j, val_2 in enumerate(params_value):
h_2 = (1.0 + abs(val_2)) * np.cbrt(np.finfo(float).eps)
params_r = params_value.copy()
params_r[j] += h_2
# Calculate the first derivative w.r.t. var_1 at (params + h_2) with
# the central method. This is not the right f_x0, but the real one
# isn't needed for the central method.
f_plus = finite_diff(internal_func, None, params_r, i, h_1)
params_l = params_value.copy()
params_l[j] -= h_2
# Calculate the first derivative w.r.t. var_1 at (params - h_2) with
# the central method. This is not the right f_x0, but the real one
# isn't needed for the central method.
f_minus = finite_diff(internal_func, None, params_l, i, h_1)
f_diff = (f_plus - f_minus) / (2.0 * h_1 * h_2)
hess[i, j] = f_diff
hess[i, j] = f_diff
return hess
示例2: from_xyz100
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import cbrt [as 別名]
def from_xyz100(self, xyz):
def f(t):
delta = 6.0 / 29.0
out = numpy.array(t, dtype=float)
is_greater = out > delta ** 3
out[is_greater] = 116 * numpy.cbrt(out[is_greater]) - 16
out[~is_greater] = out[~is_greater] / (delta / 2) ** 3
return out
L = f(xyz[1] / self.whitepoint[1])
x, y, z = xyz
p = x + 15 * y + 3 * z
u = 4 * x / p
v = 9 * y / p
wx, wy, wz = self.whitepoint
q = wx + 15 * wy + 3 * wz
un = 4 * wx / q
vn = 9 * wy / q
return numpy.array([L, 13 * L * (u - un), 13 * L * (v - vn)])
示例3: symmetrized_stress
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import cbrt [as 別名]
def symmetrized_stress(self, stress):
#Make the matrix lower-diagonal
for (i,j) in [(1,0),(2,1),(2,2)]:
stress[i][j] = stress[i][j] + stress[j][i]
stress[j][i] = 0
#Normalize the matrix
snm = self.struc.lattice.stress_normalization_matrix
m2 = np.multiply(stress, snm)
#Normalize the on-diagonal elements
indices = self.struc.lattice.stress_indices
if len(indices) == 2:
total = 0
for index in indices:
total += stress[index]
value = total**0.5
for index in inices:
m2[index] = value
elif len(indices) == 3:
total = 0
for index in indices:
total += stress[index]
value = np.cbrt(total)
for index in inices:
m2[index] = value
return m2
示例4: symmetrized_stress
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import cbrt [as 別名]
def symmetrized_stress(self, stress):
#Make the matrix lower-diagonal
for (i,j) in [(1,0),(2,1),(2,2)]:
stress[i][j] = stress[i][j] + stress[j][i]
stress[j][i] = 0
#Normalize the matrix
snm = self.struc.lattice.stress_normalization_matrix
m2 = np.multiply(stress, snm)
#Normalize the on-diagonal elements
indices = self.struc.lattice.stress_indices
if len(indices) == 2:
total = 0
for index in indices:
total += stress[index]
value = np.sqrt(total)
for index in inices:
m2[index] = value
elif len(indices) == 3:
total = 0
for index in indices:
total += stress[index]
value = np.cbrt(total)
for index in inices:
m2[index] = value
return m2
示例5: random_shear_matrix
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import cbrt [as 別名]
def random_shear_matrix(width=1.0, unitary=False):
"""
Generate a random symmetric shear matrix with Gaussian elements. If unitary
is True, normalize to determinant 1
Args:
width: the width of the normal distribution to use when choosing values.
Passed to np.random.normal
unitary: whether or not to normalize the matrix to determinant 1
Returns:
a 3x3 numpy array of floats
"""
mat = np.zeros([3,3])
determinant = 0
while determinant == 0:
a, b, c = np.random.normal(scale=width), np.random.normal(scale=width), np.random.normal(scale=width)
mat = np.array([[1,a,b],[a,1,c],[b,c,1]])
determinant = np.linalg.det(mat)
if unitary:
new = mat / np.cbrt(np.linalg.det(mat))
return new
else: return mat
示例6: _subsample_array
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import cbrt [as 別名]
def _subsample_array(self, array):
original_shape = array.shape
spacing = self.spacing
extent = tuple((o_s - 1) * s for o_s, s in zip(original_shape, spacing))
dim_ratio = np.cbrt((array.nbytes / 1e6) / self.max_data_size)
max_shape = tuple(int(o_s / dim_ratio) for o_s in original_shape)
dowsnscale_factor = [max(o_s, m_s) / m_s for m_s, o_s in zip(max_shape, original_shape)]
if any([d_f > 1 for d_f in dowsnscale_factor]):
try:
import scipy.ndimage as nd
sub_array = nd.interpolation.zoom(array, zoom=[1 / d_f for d_f in dowsnscale_factor], order=0)
except ImportError:
sub_array = array[::int(np.ceil(dowsnscale_factor[0])),
::int(np.ceil(dowsnscale_factor[1])),
::int(np.ceil(dowsnscale_factor[2]))]
self._sub_spacing = tuple(e / (s - 1) for e, s in zip(extent, sub_array.shape))
else:
sub_array = array
self._sub_spacing = self.spacing
return sub_array
示例7: average_velocity
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import cbrt [as 別名]
def average_velocity(self):
"""
This property calculates and returns the cube root of the
mean cubed velocity in the turbine's rotor swept area (m/s).
Returns:
float: The average velocity across a rotor.
Examples:
To get the average velocity for a turbine:
>>> avg_vel = floris.farm.turbines[0].average_velocity()
"""
# remove all invalid numbers from interpolation
data = self.velocities[np.where(~np.isnan(self.velocities))]
avg_vel = np.cbrt(np.mean(data ** 3))
if np.isnan(avg_vel):
avg_vel = 0
elif np.isinf(avg_vel):
avg_vel = 0
return avg_vel
示例8: _split_epsilon
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import cbrt [as 別名]
def _split_epsilon(self, dims, total_iters, rho=0.225):
"""Split epsilon between sum perturbation and count perturbation, as proposed by Su et al.
Parameters
----------
dims : int
Number of dimensions to split `epsilon` across.
total_iters : int
Total number of iterations to split `epsilon` across.
rho : float, default: 0.225
Coordinate normalisation factor.
Returns
-------
epsilon_0 : float
The epsilon value for satisfying differential privacy on the count of a cluster.
epsilon_i : float
The epsilon value for satisfying differential privacy on each dimension of the center of a cluster.
"""
epsilon_i = 1
epsilon_0 = np.cbrt(4 * dims * rho ** 2)
normaliser = self.epsilon / total_iters / (epsilon_i * dims + epsilon_0)
return epsilon_i * normaliser, epsilon_0 * normaliser
示例9: _calc_iters
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import cbrt [as 別名]
def _calc_iters(self, n_dims, n_samples, rho=0.225):
"""Calculate the number of iterations to allow for the KMeans algorithm."""
epsilon_m = np.sqrt(500 * (self.n_clusters ** 3) / (n_samples ** 2) *
(n_dims + np.cbrt(4 * n_dims * (rho ** 2))) ** 3)
iters = max(min(self.epsilon / epsilon_m, 7), 2)
return int(iters)
示例10: test_cbrt_scalar
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import cbrt [as 別名]
def test_cbrt_scalar(self):
assert_almost_equal((np.cbrt(np.float32(-2.5)**3)), -2.5)
示例11: test_cbrt
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import cbrt [as 別名]
def test_cbrt(self):
x = np.array([1., 2., -3., np.inf, -np.inf])
assert_almost_equal(np.cbrt(x**3), x)
assert_(np.isnan(np.cbrt(np.nan)))
assert_equal(np.cbrt(np.inf), np.inf)
assert_equal(np.cbrt(-np.inf), -np.inf)
示例12: cbrt
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import cbrt [as 別名]
def cbrt(self):
return self.power(1/3)
####################################################################################################
示例13: cbrt
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import cbrt [as 別名]
def cbrt(x, out=None, where=None, **kwargs):
"""
Return the cube-root of an tensor, element-wise.
Parameters
----------
x : array_like
The values whose cube-roots are required.
out : Tensor, None, or tuple of Tensor and None, optional
A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or `None`,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.
where : array_like, optional
Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.
**kwargs
Returns
-------
y : Tensor
An tensor of the same shape as `x`, containing the cube
cube-root of each element in `x`.
If `out` was provided, `y` is a reference to it.
Examples
--------
>>> import mars.tensor as mt
>>> mt.cbrt([1,8,27]).execute()
array([ 1., 2., 3.])
"""
op = TensorCbrt(**kwargs)
return op(x, out=out, where=where)
示例14: eclipse_duration
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import cbrt [as 別名]
def eclipse_duration(beta, period, r_p=R_E_MEAN_KM):
"""Eclipse duration, in minutes"""
# Based on Vallado 4th ed., pp. 305
# Circular orbital radius corresponding to given period
r = np.cbrt(MU_E / (4 * pi ** 2) * (period * 60) ** 2)
# We clip the argument of acos between -1 and 1
# to return a eclipse duration of 0 when it is out of range
return acos(
np.clip(sqrt(1 - (r_p / r) ** 2) / cos(radians(beta)), -1, 1)
) * period / pi
示例15: CubeRootFeature
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import cbrt [as 別名]
def CubeRootFeature(d):
##the cube root of the difference between the two positions, the radius of protein is related to this feature
seqLen = len(d['sequence'])
feature = []
for i in range(seqLen):
dVector = [ abs(j-i) for j in range(seqLen) ]
feature.append(dVector)
posFeature = np.cbrt( np.array( feature ).astype(theano.config.floatX) )
return posFeature
## load native distance matrix from a file