當前位置: 首頁>>代碼示例>>Python>>正文


Python numpy.cast方法代碼示例

本文整理匯總了Python中numpy.cast方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.cast方法的具體用法?Python numpy.cast怎麽用?Python numpy.cast使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在numpy的用法示例。


在下文中一共展示了numpy.cast方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: get_training_data

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import cast [as 別名]
def get_training_data(num_samples):
    """Generates some training data."""

    # As (x, y) Cartesian coordinates.
    x = np.random.randint(0, 2, size=(num_samples, 2))

    y = x[:, 0] + 2 * x[:, 1]  # 2-digit binary to integer.
    y = np.cast['int32'](y)

    x = np.cast['float32'](x) * 1.6 - 0.8  # Scales to [-1, 1].
    x += np.random.uniform(-0.1, 0.1, size=x.shape)

    y_ohe = np.cast['float32'](np.eye(4)[y])
    y = np.cast['float32'](np.expand_dims(y, -1))

    return x, y, y_ohe 
開發者ID:codekansas,項目名稱:gandlf,代碼行數:18,代碼來源:xor.py

示例2: __call__

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import cast [as 別名]
def __call__(self, algorithm):
        """
        Adjusts the learning rate according to the linear decay schedule

        Parameters
        ----------
        algorithm : WRITEME
        """
        if self._count == 0:
            self._base_lr = algorithm.learning_rate.get_value()
            self._step = ((self._base_lr - self._base_lr * self.decay_factor) /
                          (self.saturate - self.start + 1))
        self._count += 1
        if self._count >= self.start:
            if self._count < self.saturate:
                new_lr = self._base_lr - self._step * (self._count
                        - self.start + 1)
            else:
                new_lr = self._base_lr * self.decay_factor
        else:
            new_lr = self._base_lr
        assert new_lr > 0
        new_lr = np.cast[config.floatX](new_lr)
        algorithm.learning_rate.set_value(new_lr) 
開發者ID:goodfeli,項目名稱:adversarial,代碼行數:26,代碼來源:sgd_alt.py

示例3: on_monitor

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import cast [as 別名]
def on_monitor(self, model, dataset, algorithm):
        """
        Adjusts the learning rate according to the decay schedule.

        Parameters
        ----------
        model : a Model instance
        dataset : Dataset
        algorithm : WRITEME
        """

        if not self._initialized:
            self._init_lr = algorithm.learning_rate.get_value()
            if self._init_lr < self.min_lr:
                raise ValueError("The initial learning rate is smaller than " +
                                 "the minimum allowed learning rate.")
            self._initialized = True
        self._count += 1
        algorithm.learning_rate.set_value(np.cast[config.floatX](
            self.current_lr())) 
開發者ID:goodfeli,項目名稱:adversarial,代碼行數:22,代碼來源:sgd_alt.py

示例4: adam_updates

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import cast [as 別名]
def adam_updates(params, cost, lr=0.001, mom1=0.9, mom2=0.999):
    updates = []
    grads = T.grad(cost, params)
    t = th.shared(np.cast[th.config.floatX](1.))
    for p, g in zip(params, grads):
        v = th.shared(np.cast[th.config.floatX](p.get_value() * 0.))
        mg = th.shared(np.cast[th.config.floatX](p.get_value() * 0.))
        v_t = mom1*v + (1. - mom1)*g
        mg_t = mom2*mg + (1. - mom2)*T.square(g)
        v_hat = v_t / (1. - mom1 ** t)
        mg_hat = mg_t / (1. - mom2 ** t)
        g_t = v_hat / T.sqrt(mg_hat + 1e-8)
        p_t = p - lr * g_t
        updates.append((v, v_t))
        updates.append((mg, mg_t))
        updates.append((p, p_t))
    updates.append((t, t+1))
    return updates 
開發者ID:djsutherland,項目名稱:opt-mmd,代碼行數:20,代碼來源:nn.py

示例5: get_output_for

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import cast [as 別名]
def get_output_for(self, input, deterministic=False, **kwargs):
        if deterministic:
            norm_features = (input-self.avg_batch_mean.dimshuffle(*self.dimshuffle_args)) / T.sqrt(1e-6 + self.avg_batch_var).dimshuffle(*self.dimshuffle_args)
        else:
            batch_mean = T.mean(input,axis=self.axes_to_sum).flatten()
            centered_input = input-batch_mean.dimshuffle(*self.dimshuffle_args)
            batch_var = T.mean(T.square(centered_input),axis=self.axes_to_sum).flatten()
            batch_stdv = T.sqrt(1e-6 + batch_var)
            norm_features = centered_input / batch_stdv.dimshuffle(*self.dimshuffle_args)

            # BN updates
            new_m = 0.9*self.avg_batch_mean + 0.1*batch_mean
            new_v = 0.9*self.avg_batch_var + T.cast((0.1*input.shape[0])/(input.shape[0]-1),th.config.floatX)*batch_var
            self.bn_updates = [(self.avg_batch_mean, new_m), (self.avg_batch_var, new_v)]

        if hasattr(self, 'g'):
            activation = norm_features*self.g.dimshuffle(*self.dimshuffle_args)
        else:
            activation = norm_features
        if hasattr(self, 'b'):
            activation += self.b.dimshuffle(*self.dimshuffle_args)

        return self.nonlinearity(activation) 
開發者ID:djsutherland,項目名稱:opt-mmd,代碼行數:25,代碼來源:nn.py

示例6: test_stabilize_log_softmax

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import cast [as 別名]
def test_stabilize_log_softmax():
    mode = theano.compile.mode.get_default_mode()
    mode = mode.including('local_log_softmax', 'specialize')

    x = matrix()
    y = softmax(x)
    z = theano.tensor.log(y)

    f = theano.function([x], z, mode=mode)
    assert hasattr(f.maker.fgraph.outputs[0].tag, 'trace')

    # check that the softmax has been optimized out
    for node in f.maker.fgraph.toposort():
        assert not isinstance(node.op, y.owner.op.__class__)

    # call the function so debug mode can verify the optimized
    # version matches the unoptimized version
    rng = numpy.random.RandomState([2012, 8, 22])
    f(numpy.cast[config.floatX](rng.randn(2, 3))) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:21,代碼來源:test_nnet.py

示例7: test_perform

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import cast [as 別名]
def test_perform(self):
        x = tensor.matrix()
        y = tensor.scalar()
        f = function([x, y], fill_diagonal(x, y))
        for shp in [(8, 8), (5, 8), (8, 5)]:
            a = numpy.random.rand(*shp).astype(config.floatX)
            val = numpy.cast[config.floatX](numpy.random.rand())
            out = f(a, val)
            # We can't use numpy.fill_diagonal as it is bugged.
            assert numpy.allclose(numpy.diag(out), val)
            assert (out == val).sum() == min(a.shape)

        # test for 3d tensor
        a = numpy.random.rand(3, 3, 3).astype(config.floatX)
        x = tensor.tensor3()
        y = tensor.scalar()
        f = function([x, y], fill_diagonal(x, y))
        val = numpy.cast[config.floatX](numpy.random.rand() + 10)
        out = f(a, val)
        # We can't use numpy.fill_diagonal as it is bugged.
        assert out[0, 0, 0] == val
        assert out[1, 1, 1] == val
        assert out[2, 2, 2] == val
        assert (out == val).sum() == min(a.shape) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:26,代碼來源:test_extra_ops.py

示例8: test_elemwise_comparaison_cast

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import cast [as 別名]
def test_elemwise_comparaison_cast():
    """
    test if an elemwise comparaison followed by a cast to float32 are
    pushed to gpu.
    """

    a = tensor.fmatrix()
    b = tensor.fmatrix()
    av = theano._asarray(numpy.random.rand(4, 4), dtype='float32')
    bv = numpy.ones((4, 4), dtype='float32')

    for g, ans in [(tensor.lt, av < bv), (tensor.gt, av > bv),
                   (tensor.le, av <= bv), (tensor.ge, av >= bv)]:

        f = pfunc([a, b], tensor.cast(g(a, b), 'float32'), mode=mode_with_gpu)

        out = f(av, bv)
        assert numpy.all(out == ans)
        assert any([isinstance(node.op, cuda.GpuElemwise)
                    for node in f.maker.fgraph.toposort()]) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:22,代碼來源:test_basic_ops.py

示例9: test_grad_disconnected

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import cast [as 別名]
def test_grad_disconnected(self):

        # tests corner cases of gradient for shape and alloc

        x = theano.tensor.vector(name='x')
        total = x.sum()
        total.name = 'total'
        num_elements = x.shape[0]
        num_elements.name = 'num_elements'
        silly_vector = theano.tensor.alloc(total / num_elements, num_elements)
        silly_vector.name = 'silly_vector'
        cost = silly_vector.sum()
        cost.name = 'cost'
        # note that cost simplifies to be the same as "total"
        g = gradient.grad(cost, x, add_names=False)
        # we still need to pass in x because it determines the shape of
        # the output
        f = theano.function([x], g)
        rng = np.random.RandomState([2012, 9, 5])
        x = np.cast[x.dtype](rng.randn(3))
        g = f(x)
        assert np.allclose(g, np.ones(x.shape, dtype=x.dtype)) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:24,代碼來源:test_gradient.py

示例10: test_correct_answer

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import cast [as 別名]
def test_correct_answer(self):
        a = T.matrix()
        b = T.matrix()

        x = T.tensor3()
        y = T.tensor3()

        A = numpy.cast[theano.config.floatX](numpy.random.rand(5, 3))
        B = numpy.cast[theano.config.floatX](numpy.random.rand(7, 2))
        X = numpy.cast[theano.config.floatX](numpy.random.rand(5, 6, 1))
        Y = numpy.cast[theano.config.floatX](numpy.random.rand(1, 9, 3))

        make_list((3., 4.))
        c = make_list((a, b))
        z = make_list((x, y))
        fc = theano.function([a, b], c)
        fz = theano.function([x, y], z)
        self.assertTrue((m == n).all() for m, n in zip(fc(A, B), [A, B]))
        self.assertTrue((m == n).all() for m, n in zip(fz(X, Y), [X, Y])) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:21,代碼來源:test_basic.py

示例11: ImgBatchRescale

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import cast [as 別名]
def ImgBatchRescale(img,center=True,scale=True, convert_back=False):
    img = np.array(img)
    img = np.cast['float32'](img)
    if convert_back is True:
        b,C,H,W = img.shape
        print img.dtype
        imgh = np.zeros((b,H,W,C),dtype=img.dtype)
        for i in range(b):
            imgh[i,:,:,:] = convert_img_back(img[i,:,:,:])
        img = imgh
    if center and scale:
        img = ((img+1) / 2 * 255).astype(np.uint8) 
    elif center:
	img = (img + 127.5).astype(np.uint8) 
    elif scale:
	img = (img * 255).astype(np.uint8) 
    return img 
開發者ID:WANG-Chaoyue,項目名稱:EvolutionaryGAN,代碼行數:19,代碼來源:data_utils.py

示例12: test_fit_normalized

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import cast [as 別名]
def test_fit_normalized(self, input_shape, output_dim):
        bmr = BernoulliMLPRegressor(input_shape=input_shape,
                                    output_dim=output_dim)

        observations, returns = get_train_data(input_shape, output_dim)

        for _ in range(150):
            bmr.fit(observations, returns)

        paths, expected = get_test_data(input_shape, output_dim)

        prediction = np.cast['int'](bmr.predict(paths['observations']))
        assert np.allclose(prediction, expected, rtol=0, atol=0.1)

        x_mean = self.sess.run(bmr.model._networks['default'].x_mean)
        x_mean_expected = np.mean(observations, axis=0, keepdims=True)
        x_std = self.sess.run(bmr.model._networks['default'].x_std)
        x_std_expected = np.std(observations, axis=0, keepdims=True)

        assert np.allclose(x_mean, x_mean_expected)
        assert np.allclose(x_std, x_std_expected)

    # yapf: disable 
開發者ID:rlworkgroup,項目名稱:garage,代碼行數:25,代碼來源:test_bernoulli_mlp_regressor.py

示例13: test_fit_unnormalized

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import cast [as 別名]
def test_fit_unnormalized(self, input_shape, output_dim):
        bmr = BernoulliMLPRegressor(input_shape=input_shape,
                                    output_dim=output_dim,
                                    normalize_inputs=False)

        observations, returns = get_train_data(input_shape, output_dim)

        for _ in range(150):
            bmr.fit(observations, returns)

        paths, expected = get_test_data(input_shape, output_dim)

        prediction = np.cast['int'](bmr.predict(paths['observations']))

        assert np.allclose(prediction, expected, rtol=0, atol=0.1)

        x_mean = self.sess.run(bmr.model._networks['default'].x_mean)
        x_mean_expected = np.zeros_like(x_mean)
        x_std = self.sess.run(bmr.model._networks['default'].x_std)
        x_std_expected = np.ones_like(x_std)

        assert np.allclose(x_mean, x_mean_expected)
        assert np.allclose(x_std, x_std_expected)

    # yapf: disable 
開發者ID:rlworkgroup,項目名稱:garage,代碼行數:27,代碼來源:test_bernoulli_mlp_regressor.py

示例14: test_fit_with_no_trust_region

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import cast [as 別名]
def test_fit_with_no_trust_region(self, input_shape, output_dim):
        bmr = BernoulliMLPRegressor(input_shape=input_shape,
                                    output_dim=output_dim,
                                    use_trust_region=False)

        observations, returns = get_train_data(input_shape, output_dim)

        for _ in range(150):
            bmr.fit(observations, returns)

        paths, expected = get_test_data(input_shape, output_dim)
        prediction = np.cast['int'](bmr.predict(paths['observations']))

        assert np.allclose(prediction, expected, rtol=0, atol=0.1)

        x_mean = self.sess.run(bmr.model._networks['default'].x_mean)
        x_mean_expected = np.mean(observations, axis=0, keepdims=True)
        x_std = self.sess.run(bmr.model._networks['default'].x_std)
        x_std_expected = np.std(observations, axis=0, keepdims=True)

        assert np.allclose(x_mean, x_mean_expected)
        assert np.allclose(x_std, x_std_expected) 
開發者ID:rlworkgroup,項目名稱:garage,代碼行數:24,代碼來源:test_bernoulli_mlp_regressor.py

示例15: test_is_pickleable

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import cast [as 別名]
def test_is_pickleable(self):
        bmr = BernoulliMLPRegressor(input_shape=(1, ), output_dim=2)

        with tf.compat.v1.variable_scope(
                'BernoulliMLPRegressor/NormalizedInputMLPModel', reuse=True):
            bias = tf.compat.v1.get_variable('mlp/hidden_0/bias')
        bias.load(tf.ones_like(bias).eval())
        bias1 = bias.eval()

        result1 = np.cast['int'](bmr.predict(np.ones((1, 1))))
        h = pickle.dumps(bmr)

        with tf.compat.v1.Session(graph=tf.Graph()):
            bmr_pickled = pickle.loads(h)
            result2 = np.cast['int'](bmr_pickled.predict(np.ones((1, 1))))
            assert np.array_equal(result1, result2)

            with tf.compat.v1.variable_scope(
                    'BernoulliMLPRegressor/NormalizedInputMLPModel',
                    reuse=True):
                bias2 = tf.compat.v1.get_variable('mlp/hidden_0/bias').eval()

            assert np.array_equal(bias1, bias2) 
開發者ID:rlworkgroup,項目名稱:garage,代碼行數:25,代碼來源:test_bernoulli_mlp_regressor.py


注:本文中的numpy.cast方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。