本文整理匯總了Python中numpy.c_方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.c_方法的具體用法?Python numpy.c_怎麽用?Python numpy.c_使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類numpy
的用法示例。
在下文中一共展示了numpy.c_方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _add_bias
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import c_ [as 別名]
def _add_bias(self, X):
"""add bias to list
Args:
x_vs [[float]] Array: vec to add bias
Returns:
[float]: added vec
Examples:
>>> e = ELM(10, 3)
>>> e._add_bias(np.array([[1,2,3], [1,2,3]]))
array([[1., 2., 3., 1.],
[1., 2., 3., 1.]])
"""
return np.c_[X, np.ones(X.shape[0])]
示例2: fetch
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import c_ [as 別名]
def fetch(self, n_tr, n_val, n_test, seed=0):
x, y = self.load()
# split data
x_tr, x_val, y_tr, y_val = train_test_split(
x, y, train_size=n_tr, test_size=n_val+n_test, random_state=seed)
x_val, x_test, y_val, y_test = train_test_split(
x_val, y_val, train_size=n_val, test_size=n_test, random_state=seed+1)
# process x
if self.normalize:
scaler = StandardScaler()
scaler.fit(x_tr)
x_tr = scaler.transform(x_tr)
x_val = scaler.transform(x_val)
x_test = scaler.transform(x_test)
if self.append_one:
x_tr = np.c_[x_tr, np.ones(n_tr)]
x_val = np.c_[x_val, np.ones(n_val)]
x_test = np.c_[x_test, np.ones(n_test)]
return (x_tr, y_tr), (x_val, y_val), (x_test, y_test)
示例3: show_classification_areas
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import c_ [as 別名]
def show_classification_areas(X, Y, lr):
x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5
xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.02), np.arange(y_min, y_max, 0.02))
Z = lr.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
plt.figure(1, figsize=(30, 25))
plt.pcolormesh(xx, yy, Z, cmap=plt.cm.Pastel1)
# Plot also the training points
plt.scatter(X[:, 0], X[:, 1], c=np.abs(Y - 1), edgecolors='k', cmap=plt.cm.coolwarm)
plt.xlabel('X')
plt.ylabel('Y')
plt.xlim(xx.min(), xx.max())
plt.ylim(yy.min(), yy.max())
plt.xticks(())
plt.yticks(())
plt.show()
開發者ID:PacktPublishing,項目名稱:Fundamentals-of-Machine-Learning-with-scikit-learn,代碼行數:23,代碼來源:1logistic_regression.py
示例4: test_blockdiag_GMM_train_and_convert
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import c_ [as 別名]
def test_blockdiag_GMM_train_and_convert(self):
jnt = np.random.rand(100, 20)
gmm_tr = GMMTrainer(n_mix=4, n_iter=100, covtype='block_diag')
gmm_tr.train(jnt)
gmm_cv = GMMConvertor(
n_mix=4, covtype='block_diag', gmmmode=None)
gmm_cv.open_from_param(gmm_tr.param)
data = np.random.rand(200, 5)
sddata = np.c_[data, delta(data)]
odata = gmm_cv.convert(sddata, cvtype='mlpg')
odata = gmm_cv.convert(sddata, cvtype='mmse')
assert data.shape == odata.shape
# test for singlepath
Ajnt = np.random.rand(100, 120)
Bjnt = np.random.rand(100, 140)
gmm_tr.estimate_responsibility(jnt)
Aparam = gmm_tr.train_singlepath(Ajnt)
Bparam = gmm_tr.train_singlepath(Bjnt)
assert np.allclose(Aparam.weights_, Bparam.weights_)
示例5: test_GMM_train_and_convert
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import c_ [as 別名]
def test_GMM_train_and_convert(self):
jnt = np.random.rand(100, 20)
gmm_tr = GMMTrainer(n_mix=4, n_iter=100, covtype='full')
gmm_tr.train(jnt)
data = np.random.rand(200, 5)
sddata = np.c_[data, delta(data)]
gmm_cv = GMMConvertor(
n_mix=4, covtype='full', gmmmode=None)
gmm_cv.open_from_param(gmm_tr.param)
odata = gmm_cv.convert(sddata, cvtype='mlpg')
odata = gmm_cv.convert(sddata, cvtype='mmse')
assert data.shape == odata.shape
# test for singlepath
Ajnt = np.random.rand(100, 120)
Bjnt = np.random.rand(100, 140)
gmm_tr.estimate_responsibility(jnt)
Aparam = gmm_tr.train_singlepath(Ajnt)
Bparam = gmm_tr.train_singlepath(Bjnt)
assert np.allclose(Aparam.weights_, Bparam.weights_)
示例6: align_data
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import c_ [as 別名]
def align_data(org_data, tar_data, twf):
"""Get aligned joint feature vector
Paramters
---------
orgdata : array, shape (`T_org`, `dim_org`)
Acoustic feature vector of original speaker
tardata : array, shape (`T_tar`, `dim_tar`)
Acoustic feature vector of target speaker
twf : array, shape (`2`, `T`)
Time warping function between original and target
Returns
-------
jdata : array, shape (`T_new` `dim_org + dim_tar`)
Joint feature vector between source and target
"""
jdata = np.c_[org_data[twf[0]], tar_data[twf[1]]]
return jdata
示例7: static_delta
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import c_ [as 別名]
def static_delta(data, win=[-1.0, 1.0, 0]):
"""Calculate static and delta component
Parameters
----------
data : array, shape (`T`, `dim`)
Array of static matrix sequence.
win: array, optional, shape (`3`)
The shape of window matrix.
Default set to [-1.0, 1.0, 0].
Returns
-------
sddata: array, shape (`T`, `dim*2`)
Array static and delta matrix sequence.
"""
sddata = np.c_[data, delta(data, win)]
return sddata
示例8: testC_
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import c_ [as 別名]
def testC_(self):
r = mt.c_[mt.array([1, 2, 3]), mt.array([4, 5, 6])]
result = self.executor.execute_tensor(r, concat=True)[0]
expected = np.c_[np.array([1, 2, 3]), np.array([4, 5, 6])]
np.testing.assert_array_equal(result, expected)
r = mt.c_[mt.array([[1, 2, 3]]), 0, 0, mt.array([[4, 5, 6]])]
result = self.executor.execute_tensor(r, concat=True)[0]
expected = np.c_[np.array([[1, 2, 3]]), 0, 0, np.array([[4, 5, 6]])]
np.testing.assert_array_equal(result, expected)
r = mt.c_[:3, 1:4]
result = self.executor.execute_tensor(r, concat=True)[0]
expected = np.c_[:3, 1:4]
np.testing.assert_array_equal(result, expected)
示例9: test_orthogonalize_dense
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import c_ [as 別名]
def test_orthogonalize_dense(collection):
transform.Factor(collection, 'trial_type', sep=sep)
sampling_rate = collection.sampling_rate
# Store pre-orth variables needed for tests
pg_pre = collection['trial_type/parametric gain'].to_dense(sampling_rate)
rt = collection['RT'].to_dense(sampling_rate)
# Orthogonalize and store result
transform.Orthogonalize(collection, variables='trial_type/parametric gain',
other='RT', dense=True, groupby=['run', 'subject'])
pg_post = collection['trial_type/parametric gain']
# Verify that the to_dense() calls result in identical indexing
ent_cols = ['subject', 'run']
assert pg_pre.to_df()[ent_cols].equals(rt.to_df()[ent_cols])
assert pg_post.to_df()[ent_cols].equals(rt.to_df()[ent_cols])
vals = np.c_[rt.values, pg_pre.values, pg_post.values]
df = pd.DataFrame(vals, columns=['rt', 'pre', 'post'])
groupby = rt.get_grouper(['run', 'subject'])
pre_r = df.groupby(groupby).apply(lambda x: x.corr().iloc[0, 1])
post_r = df.groupby(groupby).apply(lambda x: x.corr().iloc[0, 2])
assert (pre_r > 0.2).any()
assert (post_r < 0.0001).all()
示例10: compute_similarity_transform
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import c_ [as 別名]
def compute_similarity_transform(points_static, points_to_transform):
#http://nghiaho.com/?page_id=671
p0 = np.copy(points_static).T
p1 = np.copy(points_to_transform).T
t0 = -np.mean(p0, axis=1).reshape(3,1)
t1 = -np.mean(p1, axis=1).reshape(3,1)
t_final = t1 -t0
p0c = p0+t0
p1c = p1+t1
covariance_matrix = p0c.dot(p1c.T)
U,S,V = np.linalg.svd(covariance_matrix)
R = U.dot(V)
if np.linalg.det(R) < 0:
R[:,2] *= -1
rms_d0 = np.sqrt(np.mean(np.linalg.norm(p0c, axis=0)**2))
rms_d1 = np.sqrt(np.mean(np.linalg.norm(p1c, axis=0)**2))
s = (rms_d0/rms_d1)
P = np.c_[s*np.eye(3).dot(R), t_final]
return P
示例11: compute_similarity_transform
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import c_ [as 別名]
def compute_similarity_transform(points_static, points_to_transform):
# http://nghiaho.com/?page_id=671
p0 = np.copy(points_static).T
p1 = np.copy(points_to_transform).T
t0 = -np.mean(p0, axis=1).reshape(3, 1)
t1 = -np.mean(p1, axis=1).reshape(3, 1)
t_final = t1 - t0
p0c = p0 + t0
p1c = p1 + t1
covariance_matrix = p0c.dot(p1c.T)
U, S, V = np.linalg.svd(covariance_matrix)
R = U.dot(V)
if np.linalg.det(R) < 0:
R[:, 2] *= -1
rms_d0 = np.sqrt(np.mean(np.linalg.norm(p0c, axis=0) ** 2))
rms_d1 = np.sqrt(np.mean(np.linalg.norm(p1c, axis=0) ** 2))
s = (rms_d0 / rms_d1)
P = np.c_[s * np.eye(3).dot(R), t_final]
return P
示例12: exact_xp_2_xxstg_mad
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import c_ [as 別名]
def exact_xp_2_xxstg_mad(xp, gamref):
# to mad format
N = xp.shape[0]
xxstg = np.zeros((N, 6))
pref = m_e_eV * np.sqrt(gamref ** 2 - 1)
u = np.c_[xp[:, 3], xp[:, 4], xp[:, 5] + pref]
gamma = np.sqrt(1 + np.sum(u * u, 1) / m_e_eV ** 2)
beta = np.sqrt(1 - gamma ** -2)
betaref = np.sqrt(1 - gamref ** -2)
if np.__version__ > "1.8":
p0 = np.linalg.norm(u, 2, 1).reshape((N, 1))
else:
p0 = np.sqrt(u[:, 0] ** 2 + u[:, 1] ** 2 + u[:, 2] ** 2).reshape((N, 1))
u = u / p0
cdt = -xp[:, 2] / (beta * u[:, 2])
xxstg[:, 0] = xp[:, 0] + beta * u[:, 0] * cdt
xxstg[:, 2] = xp[:, 1] + beta * u[:, 1] * cdt
xxstg[:, 4] = cdt
xxstg[:, 1] = xp[:, 3] / pref
xxstg[:, 3] = xp[:, 4] / pref
xxstg[:, 5] = (gamma / gamref - 1) / betaref
return xxstg
示例13: exact_xxstg_2_xp_mad
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import c_ [as 別名]
def exact_xxstg_2_xp_mad(xxstg, gamref):
# from mad format
N = int(xxstg.size / 6)
xp = np.zeros((N, 6))
pref = m_e_eV * np.sqrt(gamref ** 2 - 1)
betaref = np.sqrt(1 - gamref ** -2)
gamma = (betaref * xxstg[5] + 1) * gamref
beta = np.sqrt(1 - gamma ** -2)
pz2pref = np.sqrt(((gamma * beta) / (gamref * betaref)) ** 2 - xxstg[1] ** 2 - xxstg[3] ** 2)
u = np.c_[xxstg[1] / pz2pref, xxstg[3] / pz2pref, np.ones(N)]
if np.__version__ > "1.8":
norm = np.linalg.norm(u, 2, 1).reshape((N, 1))
else:
norm = np.sqrt(u[:, 0] ** 2 + u[:, 1] ** 2 + u[:, 2] ** 2).reshape((N, 1))
u = u / norm
xp[:, 0] = xxstg[0] - u[:, 0] * beta * xxstg[4]
xp[:, 1] = xxstg[2] - u[:, 1] * beta * xxstg[4]
xp[:, 2] = -u[:, 2] * beta * xxstg[4]
xp[:, 3] = u[:, 0] * gamma * beta * m_e_eV
xp[:, 4] = u[:, 1] * gamma * beta * m_e_eV
xp[:, 5] = u[:, 2] * gamma * beta * m_e_eV - pref
return xp
示例14: exact_xp_2_xxstg_dp
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import c_ [as 別名]
def exact_xp_2_xxstg_dp(xp, gamref):
# dp/p0
N = xp.shape[0]
xxstg = np.zeros((N, 6))
pref = m_e_eV * np.sqrt(gamref ** 2 - 1)
u = np.c_[xp[:, 3], xp[:, 4], xp[:, 5] + pref]
gamma = np.sqrt(1 + np.sum(u * u, 1) / m_e_eV ** 2)
beta = np.sqrt(1 - gamma ** -2)
if np.__version__ > "1.8":
p0 = np.linalg.norm(u, 2, 1).reshape((N, 1))
else:
p0 = np.sqrt(u[:, 0] ** 2 + u[:, 1] ** 2 + u[:, 2] ** 2).reshape((N, 1))
u = u / p0
cdt = -xp[:, 2] / (beta * u[:, 2])
xxstg[:, 0] = xp[:, 0] + beta * u[:, 0] * cdt
xxstg[:, 2] = xp[:, 1] + beta * u[:, 1] * cdt
xxstg[:, 4] = cdt
xxstg[:, 1] = u[:, 0] / u[:, 2]
xxstg[:, 3] = u[:, 1] / u[:, 2]
xxstg[:, 5] = p0.reshape(N) / pref - 1
return xxstg
示例15: exact_xp_2_xxstg_de
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import c_ [as 別名]
def exact_xp_2_xxstg_de(xp, gamref):
# dE/E0
N = xp.shape[0]
xxstg = np.zeros((N, 6))
pref = m_e_eV * np.sqrt(gamref ** 2 - 1)
u = np.c_[xp[:, 3], xp[:, 4], xp[:, 5] + pref]
gamma = np.sqrt(1 + np.sum(u * u, 1) / m_e_eV ** 2)
beta = np.sqrt(1 - gamma ** -2)
if np.__version__ > "1.8":
p0 = np.linalg.norm(u, 2, 1).reshape((N, 1))
else:
p0 = np.sqrt(u[:, 0] ** 2 + u[:, 1] ** 2 + u[:, 2] ** 2).reshape((N, 1))
u = u / p0
cdt = -xp[:, 2] / (beta * u[:, 2])
xxstg[:, 0] = xp[:, 0] + beta * u[:, 0] * cdt
xxstg[:, 2] = xp[:, 1] + beta * u[:, 1] * cdt
xxstg[:, 4] = cdt
xxstg[:, 1] = u[:, 0] / u[:, 2]
xxstg[:, 3] = u[:, 1] / u[:, 2]
xxstg[:, 5] = gamma / gamref - 1
return xxstg