本文整理匯總了Python中numpy.bytes_方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.bytes_方法的具體用法?Python numpy.bytes_怎麽用?Python numpy.bytes_使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類numpy
的用法示例。
在下文中一共展示了numpy.bytes_方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: h5py_dataset_iterator
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import bytes_ [as 別名]
def h5py_dataset_iterator(self, g, prefix=''):
for key in g.keys():
item = g[key]
path = '{}/{}'.format(prefix, key)
keys = [i for i in item.keys()]
if isinstance(item[keys[0]], h5py.Dataset): # test for dataset
data = {'path': path}
for k in keys:
if not isinstance(item[k], h5py.Group):
dataset = np.array(item[k].value)
if type(dataset) is np.ndarray:
if dataset.size != 0:
if type(dataset[0]) is np.bytes_:
dataset = [a.decode('ascii') for a in dataset]
data.update({k: dataset})
yield data
else: # test for group (go down)
for s in self.h5py_dataset_iterator(item, path):
yield s
示例2: get_data
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import bytes_ [as 別名]
def get_data(self, path, prefix=''):
item = self.store[path]
path = '{}/{}'.format(prefix, path)
keys = [i for i in item.keys()]
data = {'path': path}
# print(path)
for k in keys:
if not isinstance(item[k], h5py.Group):
dataset = np.array(item[k].value)
if type(dataset) is np.ndarray:
if dataset.size != 0:
if type(dataset[0]) is np.bytes_:
dataset = [a.decode('ascii') for a in dataset]
data.update({k: dataset})
return data
示例3: test_iter_buffering_string
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import bytes_ [as 別名]
def test_iter_buffering_string():
# Safe casting disallows shrinking strings
a = np.array(['abc', 'a', 'abcd'], dtype=np.bytes_)
assert_equal(a.dtype, np.dtype('S4'))
assert_raises(TypeError, nditer, a, ['buffered'], ['readonly'],
op_dtypes='S2')
i = nditer(a, ['buffered'], ['readonly'], op_dtypes='S6')
assert_equal(i[0], asbytes('abc'))
assert_equal(i[0].dtype, np.dtype('S6'))
a = np.array(['abc', 'a', 'abcd'], dtype=np.unicode)
assert_equal(a.dtype, np.dtype('U4'))
assert_raises(TypeError, nditer, a, ['buffered'], ['readonly'],
op_dtypes='U2')
i = nditer(a, ['buffered'], ['readonly'], op_dtypes='U6')
assert_equal(i[0], sixu('abc'))
assert_equal(i[0].dtype, np.dtype('U6'))
示例4: test_iter_buffering_string
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import bytes_ [as 別名]
def test_iter_buffering_string():
# Safe casting disallows shrinking strings
a = np.array(['abc', 'a', 'abcd'], dtype=np.bytes_)
assert_equal(a.dtype, np.dtype('S4'))
assert_raises(TypeError, nditer, a, ['buffered'], ['readonly'],
op_dtypes='S2')
i = nditer(a, ['buffered'], ['readonly'], op_dtypes='S6')
assert_equal(i[0], b'abc')
assert_equal(i[0].dtype, np.dtype('S6'))
a = np.array(['abc', 'a', 'abcd'], dtype=np.unicode)
assert_equal(a.dtype, np.dtype('U4'))
assert_raises(TypeError, nditer, a, ['buffered'], ['readonly'],
op_dtypes='U2')
i = nditer(a, ['buffered'], ['readonly'], op_dtypes='U6')
assert_equal(i[0], u'abc')
assert_equal(i[0].dtype, np.dtype('U6'))
示例5: _getconv
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import bytes_ [as 別名]
def _getconv(dtype):
typ = dtype.type
if issubclass(typ, np.bool_):
return lambda x: bool(int(x))
if issubclass(typ, np.uint64):
return np.uint64
if issubclass(typ, np.int64):
return np.int64
if issubclass(typ, np.integer):
return lambda x: int(float(x))
elif issubclass(typ, np.floating):
return float
elif issubclass(typ, np.complex):
return complex
elif issubclass(typ, np.bytes_):
return bytes
else:
return str
示例6: test_iter_buffering_string
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import bytes_ [as 別名]
def test_iter_buffering_string():
# Safe casting disallows shrinking strings
a = np.array(['abc', 'a', 'abcd'], dtype=np.bytes_)
assert_equal(a.dtype, np.dtype('S4'));
assert_raises(TypeError, nditer, a, ['buffered'], ['readonly'],
op_dtypes='S2')
i = nditer(a, ['buffered'], ['readonly'], op_dtypes='S6')
assert_equal(i[0], asbytes('abc'))
assert_equal(i[0].dtype, np.dtype('S6'))
a = np.array(['abc', 'a', 'abcd'], dtype=np.unicode)
assert_equal(a.dtype, np.dtype('U4'));
assert_raises(TypeError, nditer, a, ['buffered'], ['readonly'],
op_dtypes='U2')
i = nditer(a, ['buffered'], ['readonly'], op_dtypes='U6')
assert_equal(i[0], sixu('abc'))
assert_equal(i[0].dtype, np.dtype('U6'))
示例7: _randomize_row
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import bytes_ [as 別名]
def _randomize_row(id_num):
"""Returns a row with random values"""
row_dict = {
TestSchema.id.name: np.int64(id_num),
TestSchema.id2.name: np.int32(id_num % 2),
TestSchema.id_float.name: np.float64(id_num),
TestSchema.id_odd.name: np.bool_(id_num % 2),
TestSchema.partition_key.name: np.unicode_('p_{}'.format(int(id_num / 10))),
TestSchema.python_primitive_uint8.name: np.random.randint(0, 255, dtype=np.uint8),
TestSchema.image_png.name: np.random.randint(0, 255, _DEFAULT_IMAGE_SIZE).astype(np.uint8),
TestSchema.matrix.name: np.random.random(size=_DEFAULT_IMAGE_SIZE).astype(np.float32),
TestSchema.decimal.name: Decimal(np.random.randint(0, 255) / Decimal(100)),
TestSchema.matrix_uint16.name: np.random.randint(0, 2 ** 16 - 1, _DEFAULT_IMAGE_SIZE).astype(np.uint16),
TestSchema.matrix_uint32.name: np.random.randint(0, 2 ** 32 - 1, _DEFAULT_IMAGE_SIZE).astype(np.uint32),
TestSchema.matrix_string.name: np.asarray(_random_binary_string_matrix(2, 3, 10)).astype(np.bytes_),
TestSchema.empty_matrix_string.name: np.asarray([], dtype=np.string_),
TestSchema.matrix_nullable.name: None,
TestSchema.sensor_name.name: np.asarray(['test_sensor'], dtype=np.unicode_),
TestSchema.string_array_nullable.name:
None if id_num % 5 == 0 else np.asarray([], dtype=np.unicode_)
if id_num % 4 == 0 else np.asarray([str(i + id_num) for i in range(2)], dtype=np.unicode_),
TestSchema.integer_nullable.name: None if id_num % 2 else np.int32(id_num),
}
return row_dict
示例8: _getconv
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import bytes_ [as 別名]
def _getconv(dtype):
""" Find the correct dtype converter. Adapted from matplotlib """
typ = dtype.type
if issubclass(typ, np.bool_):
return lambda x: bool(int(x))
if issubclass(typ, np.uint64):
return np.uint64
if issubclass(typ, np.int64):
return np.int64
if issubclass(typ, np.integer):
return lambda x: int(float(x))
elif issubclass(typ, np.floating):
return float
elif issubclass(typ, np.complex):
return complex
elif issubclass(typ, np.bytes_):
return bytes
else:
return str
示例9: h5py_dataset_iterator
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import bytes_ [as 別名]
def h5py_dataset_iterator(self,g, prefix=''):
for key in g.keys():
item = g[key]
path = '{}/{}'.format(prefix, key)
keys = [i for i in item.keys()]
if isinstance(item[keys[0]], h5py.Dataset): # test for dataset
data = {'path':path}
for k in keys:
if not isinstance(item[k], h5py.Group):
dataset = np.array(item[k].value)
if type(dataset) is np.ndarray:
if dataset.size != 0:
if type(dataset[0]) is np.bytes_:
dataset = [a.decode('ascii') for a in dataset]
data.update({k:dataset})
yield data
else: # test for group (go down)
yield from self.h5py_dataset_iterator(item, path)
示例10: get_data
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import bytes_ [as 別名]
def get_data(self, path, prefix=''):
item = self.store[path]
path = '{}/{}'.format(prefix, path)
keys = [i for i in item.keys()]
data = {'path': path}
# print(path)
for k in keys:
if not isinstance(item[k], h5py.Group):
dataset = np.array(item[k].value)
if type(dataset) is np.ndarray:
if dataset.size != 0:
if type(dataset[0]) is np.bytes_:
dataset = [a.decode('ascii') for a in dataset]
data.update({k: dataset})
return data
示例11: _extract_edge_value
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import bytes_ [as 別名]
def _extract_edge_value(tree, edge):
ft_idx = edge.calc_record.feature_idx
split_type = edge.calc_record.split_type
val = edge.value_encoded
pivot = edge.calc_record.pivot
if split_type is CalcRecord.NUM:
if val == SplitRecord.GREATER:
return ">{0:.2f}".format(pivot)
else:
return "<={0:.2f}".format(pivot)
elif tree.X_encoders is not None:
value = tree.X_encoders[ft_idx].single_inv_transform(val)
if isinstance(value, np.bytes_):
return value.decode('UTF-8')
else:
return value
else:
return val
示例12: test_str_dtype
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import bytes_ [as 別名]
def test_str_dtype(self):
# see gh-8033
c = ["str1", "str2"]
for dt in (str, np.bytes_):
a = np.array(["str1", "str2"], dtype=dt)
x = np.loadtxt(c, dtype=dt)
assert_array_equal(x, a)
示例13: _getconv
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import bytes_ [as 別名]
def _getconv(dtype):
""" Find the correct dtype converter. Adapted from matplotlib """
def floatconv(x):
x.lower()
if '0x' in x:
return float.fromhex(x)
return float(x)
typ = dtype.type
if issubclass(typ, np.bool_):
return lambda x: bool(int(x))
if issubclass(typ, np.uint64):
return np.uint64
if issubclass(typ, np.int64):
return np.int64
if issubclass(typ, np.integer):
return lambda x: int(float(x))
elif issubclass(typ, np.longdouble):
return np.longdouble
elif issubclass(typ, np.floating):
return floatconv
elif issubclass(typ, complex):
return lambda x: complex(asstr(x).replace('+-', '-'))
elif issubclass(typ, np.bytes_):
return asbytes
elif issubclass(typ, np.unicode_):
return asunicode
else:
return asstr
# amount of lines loadtxt reads in one chunk, can be overridden for testing
示例14: test_scalar_type
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import bytes_ [as 別名]
def test_scalar_type(self):
assert_equal(np.sctype2char(np.double), 'd')
assert_equal(np.sctype2char(np.int_), 'l')
assert_equal(np.sctype2char(np.unicode_), 'U')
assert_equal(np.sctype2char(np.bytes_), 'S')
示例15: test_scalar_copy
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import bytes_ [as 別名]
def test_scalar_copy(self):
scalar_types = set(np.sctypeDict.values())
values = {
np.void: b"a",
np.bytes_: b"a",
np.unicode_: "a",
np.datetime64: "2017-08-25",
}
for sctype in scalar_types:
item = sctype(values.get(sctype, 1))
item2 = copy.copy(item)
assert_equal(item, item2)