本文整理匯總了Python中numpy.bool_方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.bool_方法的具體用法?Python numpy.bool_怎麽用?Python numpy.bool_使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類numpy
的用法示例。
在下文中一共展示了numpy.bool_方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: nan_filter
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import bool_ [as 別名]
def nan_filter(self):
"""Populates Target List and filters out values which are nan
"""
# filter out nan values in numerical attributes
for att in self.catalog_atts:
if ('close' in att) or ('bright' in att):
continue
if getattr(self, att).shape[0] == 0:
pass
elif (type(getattr(self, att)[0]) == str) or (type(getattr(self, att)[0]) == bytes):
# FIXME: intent here unclear:
# note float('nan') is an IEEE NaN, getattr(.) is a str, and != on NaNs is special
i = np.where(getattr(self, att) != float('nan'))[0]
self.revise_lists(i)
# exclude non-numerical types
elif type(getattr(self, att)[0]) not in (np.unicode_, np.string_, np.bool_, bytes):
if att == 'coords':
i1 = np.where(~np.isnan(self.coords.ra.to('deg').value))[0]
i2 = np.where(~np.isnan(self.coords.dec.to('deg').value))[0]
i = np.intersect1d(i1,i2)
else:
i = np.where(~np.isnan(getattr(self, att)))[0]
self.revise_lists(i)
示例2: _do
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import bool_ [as 別名]
def _do(self, pop, other, is_duplicate):
def to_float(val):
if isinstance(val, bool) or isinstance(val, np.bool_):
return 0.0 if val else 1.0
else:
return val
if other is None:
for i in range(len(pop)):
for j in range(i + 1, len(pop)):
val = to_float(self.cmp(pop[i], pop[j]))
if val < self.epsilon:
is_duplicate[i] = True
break
else:
for i in range(len(pop)):
for j in range(len(other)):
val = to_float(self.cmp(pop[i], other[j]))
if val < self.epsilon:
is_duplicate[i] = True
break
return is_duplicate
示例3: test_allany_onmatrices
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import bool_ [as 別名]
def test_allany_onmatrices(self):
x = np.array([[0.13, 0.26, 0.90],
[0.28, 0.33, 0.63],
[0.31, 0.87, 0.70]])
X = np.matrix(x)
m = np.array([[True, False, False],
[False, False, False],
[True, True, False]], dtype=np.bool_)
mX = masked_array(X, mask=m)
mXbig = (mX > 0.5)
mXsmall = (mX < 0.5)
assert_(not mXbig.all())
assert_(mXbig.any())
assert_equal(mXbig.all(0), np.matrix([False, False, True]))
assert_equal(mXbig.all(1), np.matrix([False, False, True]).T)
assert_equal(mXbig.any(0), np.matrix([False, False, True]))
assert_equal(mXbig.any(1), np.matrix([True, True, True]).T)
assert_(not mXsmall.all())
assert_(mXsmall.any())
assert_equal(mXsmall.all(0), np.matrix([True, True, False]))
assert_equal(mXsmall.all(1), np.matrix([False, False, False]).T)
assert_equal(mXsmall.any(0), np.matrix([True, True, False]))
assert_equal(mXsmall.any(1), np.matrix([True, True, False]).T)
示例4: _ravel_and_check_weights
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import bool_ [as 別名]
def _ravel_and_check_weights(a, weights):
""" Check a and weights have matching shapes, and ravel both """
a = np.asarray(a)
# Ensure that the array is a "subtractable" dtype
if a.dtype == np.bool_:
warnings.warn("Converting input from {} to {} for compatibility."
.format(a.dtype, np.uint8),
RuntimeWarning, stacklevel=2)
a = a.astype(np.uint8)
if weights is not None:
weights = np.asarray(weights)
if weights.shape != a.shape:
raise ValueError(
'weights should have the same shape as a.')
weights = weights.ravel()
a = a.ravel()
return a, weights
示例5: test_allany
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import bool_ [as 別名]
def test_allany(self):
# Checks the any/all methods/functions.
x = np.array([[0.13, 0.26, 0.90],
[0.28, 0.33, 0.63],
[0.31, 0.87, 0.70]])
m = np.array([[True, False, False],
[False, False, False],
[True, True, False]], dtype=np.bool_)
mx = masked_array(x, mask=m)
mxbig = (mx > 0.5)
mxsmall = (mx < 0.5)
assert_(not mxbig.all())
assert_(mxbig.any())
assert_equal(mxbig.all(0), [False, False, True])
assert_equal(mxbig.all(1), [False, False, True])
assert_equal(mxbig.any(0), [False, False, True])
assert_equal(mxbig.any(1), [True, True, True])
assert_(not mxsmall.all())
assert_(mxsmall.any())
assert_equal(mxsmall.all(0), [True, True, False])
assert_equal(mxsmall.all(1), [False, False, False])
assert_equal(mxsmall.any(0), [True, True, False])
assert_equal(mxsmall.any(1), [True, True, False])
示例6: test_respect_dtype_singleton
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import bool_ [as 別名]
def test_respect_dtype_singleton(self):
# See gh-7203
for dt in self.itype:
lbnd = 0 if dt is np.bool_ else np.iinfo(dt).min
ubnd = 2 if dt is np.bool_ else np.iinfo(dt).max + 1
sample = self.rfunc(lbnd, ubnd, dtype=dt)
assert_equal(sample.dtype, np.dtype(dt))
for dt in (bool, int, np.long):
lbnd = 0 if dt is bool else np.iinfo(dt).min
ubnd = 2 if dt is bool else np.iinfo(dt).max + 1
# gh-7284: Ensure that we get Python data types
sample = self.rfunc(lbnd, ubnd, dtype=dt)
assert_(not hasattr(sample, 'dtype'))
assert_equal(type(sample), dt)
示例7: _name_get
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import bool_ [as 別名]
def _name_get(dtype):
# provides dtype.name.__get__
if dtype.isbuiltin == 2:
# user dtypes don't promise to do anything special
return dtype.type.__name__
# Builtin classes are documented as returning a "bit name"
name = dtype.type.__name__
# handle bool_, str_, etc
if name[-1] == '_':
name = name[:-1]
# append bit counts to str, unicode, and void
if np.issubdtype(dtype, np.flexible) and not _isunsized(dtype):
name += "{}".format(dtype.itemsize * 8)
# append metadata to datetimes
elif dtype.type in (np.datetime64, np.timedelta64):
name += _datetime_metadata_str(dtype)
return name
示例8: test_ticket_1539
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import bool_ [as 別名]
def test_ticket_1539(self):
dtypes = [x for x in np.typeDict.values()
if (issubclass(x, np.number)
and not issubclass(x, np.timedelta64))]
a = np.array([], np.bool_) # not x[0] because it is unordered
failures = []
for x in dtypes:
b = a.astype(x)
for y in dtypes:
c = a.astype(y)
try:
np.dot(b, c)
except TypeError:
failures.append((x, y))
if failures:
raise AssertionError("Failures: %r" % failures)
示例9: test_to_frame_mixed
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import bool_ [as 別名]
def test_to_frame_mixed(self):
panel = self.panel.fillna(0)
panel['str'] = 'foo'
panel['bool'] = panel['ItemA'] > 0
lp = panel.to_frame()
wp = lp.to_panel()
assert wp['bool'].values.dtype == np.bool_
# Previously, this was mutating the underlying
# index and changing its name
assert_frame_equal(wp['bool'], panel['bool'], check_names=False)
# GH 8704
# with categorical
df = panel.to_frame()
df['category'] = df['str'].astype('category')
# to_panel
# TODO: this converts back to object
p = df.to_panel()
expected = panel.copy()
expected['category'] = 'foo'
assert_panel_equal(p, expected)
示例10: test_contains_nan
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import bool_ [as 別名]
def test_contains_nan(self):
# PR #14171
s = Series([np.nan, np.nan, np.nan], dtype=np.object_)
result = s.str.contains('foo', na=False)
expected = Series([False, False, False], dtype=np.bool_)
assert_series_equal(result, expected)
result = s.str.contains('foo', na=True)
expected = Series([True, True, True], dtype=np.bool_)
assert_series_equal(result, expected)
result = s.str.contains('foo', na="foo")
expected = Series(["foo", "foo", "foo"], dtype=np.object_)
assert_series_equal(result, expected)
result = s.str.contains('foo')
expected = Series([np.nan, np.nan, np.nan], dtype=np.object_)
assert_series_equal(result, expected)
示例11: test_select_dtypes_exclude_include_using_list_like
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import bool_ [as 別名]
def test_select_dtypes_exclude_include_using_list_like(self):
df = DataFrame({'a': list('abc'),
'b': list(range(1, 4)),
'c': np.arange(3, 6).astype('u1'),
'd': np.arange(4.0, 7.0, dtype='float64'),
'e': [True, False, True],
'f': pd.date_range('now', periods=3).values})
exclude = np.datetime64,
include = np.bool_, 'integer'
r = df.select_dtypes(include=include, exclude=exclude)
e = df[['b', 'c', 'e']]
assert_frame_equal(r, e)
exclude = 'datetime',
include = 'bool', 'int64', 'int32'
r = df.select_dtypes(include=include, exclude=exclude)
e = df[['b', 'e']]
assert_frame_equal(r, e)
示例12: test_flex_comparison_nat
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import bool_ [as 別名]
def test_flex_comparison_nat(self):
# GH 15697, GH 22163 df.eq(pd.NaT) should behave like df == pd.NaT,
# and _definitely_ not be NaN
df = pd.DataFrame([pd.NaT])
result = df == pd.NaT
# result.iloc[0, 0] is a np.bool_ object
assert result.iloc[0, 0].item() is False
result = df.eq(pd.NaT)
assert result.iloc[0, 0].item() is False
result = df != pd.NaT
assert result.iloc[0, 0].item() is True
result = df.ne(pd.NaT)
assert result.iloc[0, 0].item() is True
示例13: test_bools
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import bool_ [as 別名]
def test_bools(self):
arr = np.array([True, False, True, True, True], dtype='O')
result = lib.infer_dtype(arr, skipna=True)
assert result == 'boolean'
arr = np.array([np.bool_(True), np.bool_(False)], dtype='O')
result = lib.infer_dtype(arr, skipna=True)
assert result == 'boolean'
arr = np.array([True, False, True, 'foo'], dtype='O')
result = lib.infer_dtype(arr, skipna=True)
assert result == 'mixed'
arr = np.array([True, False, True], dtype=bool)
result = lib.infer_dtype(arr, skipna=True)
assert result == 'boolean'
arr = np.array([True, np.nan, False], dtype='O')
result = lib.infer_dtype(arr, skipna=True)
assert result == 'boolean'
result = lib.infer_dtype(arr, skipna=False)
assert result == 'mixed'
示例14: test_is_number
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import bool_ [as 別名]
def test_is_number(self):
assert is_number(True)
assert is_number(1)
assert is_number(1.1)
assert is_number(1 + 3j)
assert is_number(np.bool(False))
assert is_number(np.int64(1))
assert is_number(np.float64(1.1))
assert is_number(np.complex128(1 + 3j))
assert is_number(np.nan)
assert not is_number(None)
assert not is_number('x')
assert not is_number(datetime(2011, 1, 1))
assert not is_number(np.datetime64('2011-01-01'))
assert not is_number(Timestamp('2011-01-01'))
assert not is_number(Timestamp('2011-01-01', tz='US/Eastern'))
assert not is_number(timedelta(1000))
assert not is_number(Timedelta('1 days'))
# questionable
assert not is_number(np.bool_(False))
assert is_number(np.timedelta64(1, 'D'))
示例15: test_is_bool
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import bool_ [as 別名]
def test_is_bool(self):
assert is_bool(True)
assert is_bool(np.bool(False))
assert is_bool(np.bool_(False))
assert not is_bool(1)
assert not is_bool(1.1)
assert not is_bool(1 + 3j)
assert not is_bool(np.int64(1))
assert not is_bool(np.float64(1.1))
assert not is_bool(np.complex128(1 + 3j))
assert not is_bool(np.nan)
assert not is_bool(None)
assert not is_bool('x')
assert not is_bool(datetime(2011, 1, 1))
assert not is_bool(np.datetime64('2011-01-01'))
assert not is_bool(Timestamp('2011-01-01'))
assert not is_bool(Timestamp('2011-01-01', tz='US/Eastern'))
assert not is_bool(timedelta(1000))
assert not is_bool(np.timedelta64(1, 'D'))
assert not is_bool(Timedelta('1 days'))