當前位置: 首頁>>代碼示例>>Python>>正文


Python numpy.bool方法代碼示例

本文整理匯總了Python中numpy.bool方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.bool方法的具體用法?Python numpy.bool怎麽用?Python numpy.bool使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在numpy的用法示例。


在下文中一共展示了numpy.bool方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: fetch

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import bool [as 別名]
def fetch(clobber=False):
    """
    Downloads the 3D dust map of Leike & Ensslin (2019).

    Args:
        clobber (Optional[bool]): If ``True``, any existing file will be
            overwritten, even if it appears to match. If ``False`` (the
            default), ``fetch()`` will attempt to determine if the dataset
            already exists. This determination is not 100\% robust against data
            corruption.
    """
    dest_dir = fname_pattern = os.path.join(data_dir(), 'leike_ensslin_2019')
    fname = os.path.join(dest_dir, 'simple_cube.h5')
    
    # Check if the FITS table already exists
    md5sum = 'f54e01c253453117e3770575bed35078'

    if (not clobber) and fetch_utils.check_md5sum(fname, md5sum):
        print('File appears to exist already. Call `fetch(clobber=True)` '
              'to force overwriting of existing file.')
        return

    # Download from the server
    url = 'https://zenodo.org/record/2577337/files/simple_cube.h5?download=1'
    fetch_utils.download_and_verify(url, md5sum, fname) 
開發者ID:gregreen,項目名稱:dustmaps,代碼行數:27,代碼來源:leike_ensslin_2019.py

示例2: dataframe_select

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import bool [as 別名]
def dataframe_select(df, *cols, **filters):
    '''
    dataframe_select(df, k1=v1, k2=v2...) yields df after selecting all the columns in which the
      given keys (k1, k2, etc.) have been selected such that the associated columns in the dataframe
      contain only the rows whose cells match the given values.
    dataframe_select(df, col1, col2...) selects the given columns.
    dataframe_select(df, col1, col2..., k1=v1, k2=v2...) selects both.
    
    If a value is a tuple/list of 2 elements, then it is considered a range where cells must fall
    between the values. If value is a tuple/list of more than 2 elements or is a set of any length
    then it is a list of values, any one of which can match the cell.
    '''
    ii = np.ones(len(df), dtype='bool')
    for (k,v) in six.iteritems(filters):
        vals = df[k].values
        if   pimms.is_set(v):                    jj = np.isin(vals, list(v))
        elif pimms.is_vector(v) and len(v) == 2: jj = (v[0] <= vals) & (vals < v[1])
        elif pimms.is_vector(v):                 jj = np.isin(vals, list(v))
        else:                                    jj = (vals == v)
        ii = np.logical_and(ii, jj)
    if len(ii) != np.sum(ii): df = df.loc[ii]
    if len(cols) > 0: df = df[list(cols)]
    return df 
開發者ID:noahbenson,項目名稱:neuropythy,代碼行數:25,代碼來源:core.py

示例3: testDecodeObjectIsCrowd

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import bool [as 別名]
def testDecodeObjectIsCrowd(self):
    image_tensor = np.random.randint(255, size=(4, 5, 3)).astype(np.uint8)
    encoded_jpeg = self._EncodeImage(image_tensor)
    object_is_crowd = [0, 1]
    example = tf.train.Example(features=tf.train.Features(feature={
        'image/encoded': self._BytesFeature(encoded_jpeg),
        'image/format': self._BytesFeature('jpeg'),
        'image/object/is_crowd': self._Int64Feature(object_is_crowd),
    })).SerializeToString()

    example_decoder = tf_example_decoder.TfExampleDecoder()
    tensor_dict = example_decoder.decode(tf.convert_to_tensor(example))

    self.assertAllEqual((tensor_dict[
        fields.InputDataFields.groundtruth_is_crowd].get_shape().as_list()),
                        [None])
    with self.test_session() as sess:
      tensor_dict = sess.run(tensor_dict)

    self.assertAllEqual([bool(item) for item in object_is_crowd],
                        tensor_dict[
                            fields.InputDataFields.groundtruth_is_crowd]) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:24,代碼來源:tf_example_decoder_test.py

示例4: testDecodeObjectDifficult

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import bool [as 別名]
def testDecodeObjectDifficult(self):
    image_tensor = np.random.randint(255, size=(4, 5, 3)).astype(np.uint8)
    encoded_jpeg = self._EncodeImage(image_tensor)
    object_difficult = [0, 1]
    example = tf.train.Example(features=tf.train.Features(feature={
        'image/encoded': self._BytesFeature(encoded_jpeg),
        'image/format': self._BytesFeature('jpeg'),
        'image/object/difficult': self._Int64Feature(object_difficult),
    })).SerializeToString()

    example_decoder = tf_example_decoder.TfExampleDecoder()
    tensor_dict = example_decoder.decode(tf.convert_to_tensor(example))

    self.assertAllEqual((tensor_dict[
        fields.InputDataFields.groundtruth_difficult].get_shape().as_list()),
                        [None])
    with self.test_session() as sess:
      tensor_dict = sess.run(tensor_dict)

    self.assertAllEqual([bool(item) for item in object_difficult],
                        tensor_dict[
                            fields.InputDataFields.groundtruth_difficult]) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:24,代碼來源:tf_example_decoder_test.py

示例5: store_effect

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import bool [as 別名]
def store_effect(self, idx, action, reward, done):
        """Store effects of action taken after obeserving frame stored
        at index idx. The reason `store_frame` and `store_effect` is broken
        up into two functions is so that once can call `encode_recent_observation`
        in between.

        Paramters
        ---------
        idx: int
            Index in buffer of recently observed frame (returned by `store_frame`).
        action: int
            Action that was performed upon observing this frame.
        reward: float
            Reward that was received when the actions was performed.
        done: bool
            True if episode was finished after performing that action.
        """
        self.action[idx] = action
        self.reward[idx] = reward
        self.done[idx]   = done 
開發者ID:xuwd11,項目名稱:cs294-112_hws,代碼行數:22,代碼來源:dqn_utils.py

示例6: test_linear_sum_assignment_input_validation

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import bool [as 別名]
def test_linear_sum_assignment_input_validation():
    assert_raises(ValueError, linear_sum_assignment, [1, 2, 3])

    C = [[1, 2, 3], [4, 5, 6]]
    assert_array_equal(linear_sum_assignment(C), linear_sum_assignment(np.asarray(C)))
    # assert_array_equal(linear_sum_assignment(C),
    #                    linear_sum_assignment(matrix(C)))

    I = np.identity(3)
    assert_array_equal(linear_sum_assignment(I.astype(np.bool)), linear_sum_assignment(I))
    assert_raises(ValueError, linear_sum_assignment, I.astype(str))

    I[0][0] = np.nan
    assert_raises(ValueError, linear_sum_assignment, I)

    I = np.identity(3)
    I[1][1] = np.inf
    assert_raises(ValueError, linear_sum_assignment, I) 
開發者ID:MolSSI,項目名稱:QCElemental,代碼行數:20,代碼來源:test_scipy_hungarian.py

示例7: put

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import bool [as 別名]
def put(self, enc_obs, actions, rewards, mus, dones, masks):
        # enc_obs [nenv, (nsteps + nstack), nh, nw, nc]
        # actions, rewards, dones [nenv, nsteps]
        # mus [nenv, nsteps, nact]

        if self.enc_obs is None:
            self.enc_obs = np.empty([self.size] + list(enc_obs.shape), dtype=np.uint8)
            self.actions = np.empty([self.size] + list(actions.shape), dtype=np.int32)
            self.rewards = np.empty([self.size] + list(rewards.shape), dtype=np.float32)
            self.mus = np.empty([self.size] + list(mus.shape), dtype=np.float32)
            self.dones = np.empty([self.size] + list(dones.shape), dtype=np.bool)
            self.masks = np.empty([self.size] + list(masks.shape), dtype=np.bool)

        self.enc_obs[self.next_idx] = enc_obs
        self.actions[self.next_idx] = actions
        self.rewards[self.next_idx] = rewards
        self.mus[self.next_idx] = mus
        self.dones[self.next_idx] = dones
        self.masks[self.next_idx] = masks

        self.next_idx = (self.next_idx + 1) % self.size
        self.num_in_buffer = min(self.size, self.num_in_buffer + 1) 
開發者ID:Hwhitetooth,項目名稱:lirpg,代碼行數:24,代碼來源:buffer.py

示例8: equirect_facetype

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import bool [as 別名]
def equirect_facetype(h, w):
    '''
    0F 1R 2B 3L 4U 5D
    '''
    tp = np.roll(np.arange(4).repeat(w // 4)[None, :].repeat(h, 0), 3 * w // 8, 1)

    # Prepare ceil mask
    mask = np.zeros((h, w // 4), np.bool)
    idx = np.linspace(-np.pi, np.pi, w // 4) / 4
    idx = h // 2 - np.round(np.arctan(np.cos(idx)) * h / np.pi).astype(int)
    for i, j in enumerate(idx):
        mask[:j, i] = 1
    mask = np.roll(np.concatenate([mask] * 4, 1), 3 * w // 8, 1)

    tp[mask] = 4
    tp[np.flip(mask, 0)] = 5

    return tp.astype(np.int32) 
開發者ID:sunset1995,項目名稱:py360convert,代碼行數:20,代碼來源:utils.py

示例9: get_poly_centers

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import bool [as 別名]
def get_poly_centers(ob, type=np.float32, mesh=None):
    mod = False
    m_count = len(ob.modifiers)
    if m_count > 0:
        show = np.zeros(m_count, dtype=np.bool)
        ren_set = np.copy(show)
        ob.modifiers.foreach_get('show_render', show)
        ob.modifiers.foreach_set('show_render', ren_set)
        mod = True
    p_count = len(mesh.polygons)
    center = np.zeros(p_count * 3, dtype=type)
    mesh.polygons.foreach_get('center', center)
    center.shape = (p_count, 3)
    if mod:
        ob.modifiers.foreach_set('show_render', show)

    return center 
開發者ID:the3dadvantage,項目名稱:Modeling-Cloth,代碼行數:19,代碼來源:ModelingCloth.py

示例10: get_poly_normals

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import bool [as 別名]
def get_poly_normals(ob, type=np.float32, mesh=None):
    mod = False
    m_count = len(ob.modifiers)
    if m_count > 0:
        show = np.zeros(m_count, dtype=np.bool)
        ren_set = np.copy(show)
        ob.modifiers.foreach_get('show_render', show)
        ob.modifiers.foreach_set('show_render', ren_set)
        mod = True
    p_count = len(mesh.polygons)
    normal = np.zeros(p_count * 3, dtype=type)
    mesh.polygons.foreach_get('normal', normal)
    normal.shape = (p_count, 3)
    if mod:
        ob.modifiers.foreach_set('show_render', show)

    return normal 
開發者ID:the3dadvantage,項目名稱:Modeling-Cloth,代碼行數:19,代碼來源:ModelingCloth.py

示例11: get_v_normals

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import bool [as 別名]
def get_v_normals(ob, arr, mesh):
    """Since we're reading from a shape key we have to use
    a proxy mesh."""
    mod = False
    m_count = len(ob.modifiers)
    if m_count > 0:
        show = np.zeros(m_count, dtype=np.bool)
        ren_set = np.copy(show)
        ob.modifiers.foreach_get('show_render', show)
        ob.modifiers.foreach_set('show_render', ren_set)
        mod = True
    #v_count = len(mesh.vertices)
    #normal = np.zeros(v_count * 3)#, dtype=type)
    mesh.vertices.foreach_get('normal', arr.ravel())
    #normal.shape = (v_count, 3)
    if mod:
        ob.modifiers.foreach_set('show_render', show) 
開發者ID:the3dadvantage,項目名稱:Modeling-Cloth,代碼行數:19,代碼來源:ModelingCloth.py

示例12: triangle_bounds_check

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import bool [as 別名]
def triangle_bounds_check(tri_co, co_min, co_max, idxer, fudge):
    """Returns a bool aray indexing the triangles that
    intersect the bounds of the object"""

    # min check cull step 1
    tri_min = np.min(tri_co, axis=1) - fudge
    check_min = co_max > tri_min
    in_min = np.all(check_min, axis=1)
    
    # max check cull step 2
    idx = idxer[in_min]
    tri_max = np.max(tri_co[in_min], axis=1) + fudge
    check_max = tri_max > co_min
    in_max = np.all(check_max, axis=1)
    in_min[idx[~in_max]] = False
    
    return in_min, tri_min[in_min], tri_max[in_max] # can reuse the min and max 
開發者ID:the3dadvantage,項目名稱:Modeling-Cloth,代碼行數:19,代碼來源:ModelingCloth.py

示例13: tri_back_check

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import bool [as 別名]
def tri_back_check(co, tri_min, tri_max, idxer, fudge):
    """Returns a bool aray indexing the vertices that
    intersect the bounds of the culled triangles"""

    # min check cull step 1
    tb_min = np.min(tri_min, axis=0) - fudge
    check_min = co > tb_min
    in_min = np.all(check_min, axis=1)
    idx = idxer[in_min]
    
    # max check cull step 2
    tb_max = np.max(tri_max, axis=0) + fudge
    check_max = co[in_min] < tb_max
    in_max = np.all(check_max, axis=1)        
    in_min[idx[~in_max]] = False    
    
    return in_min 


# -------------------------------------------------------
# ------------------------------------------------------- 
開發者ID:the3dadvantage,項目名稱:Modeling-Cloth,代碼行數:23,代碼來源:ModelingCloth.py

示例14: basic_unwrap

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import bool [as 別名]
def basic_unwrap():
    ob = bpy.context.object
    mode = ob.mode
    data = ob.data
    key = ob.active_shape_key_index
    bpy.ops.object.mode_set(mode='OBJECT')        
    layers = [i.name for i in ob.data.uv_layers]
    if "UV_Shape_key" not in layers:
        bpy.ops.mesh.uv_texture_add()
        ob.data.uv_layers[len(ob.data.uv_layers) - 1].name = 'UV_Shape_key'
    
    ob.data.uv_layers.active_index = len(ob.data.uv_layers) - 1
    ob.active_shape_key_index = 0
    data.vertices.foreach_set('select', np.ones(len(data.vertices), dtype=np.bool))

    bpy.ops.object.mode_set(mode='EDIT')
    bpy.ops.uv.unwrap(method='ANGLE_BASED', margin=0.0635838)
    bpy.ops.object.mode_set(mode=mode)
    ob.active_shape_key_index = key 
開發者ID:the3dadvantage,項目名稱:Modeling-Cloth,代碼行數:21,代碼來源:UVShape.py

示例15: testDecodeObjectIsCrowd

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import bool [as 別名]
def testDecodeObjectIsCrowd(self):
    image_tensor = np.random.randint(255, size=(4, 5, 3)).astype(np.uint8)
    encoded_jpeg = self._EncodeImage(image_tensor)
    object_is_crowd = [0, 1]
    example = tf.train.Example(features=tf.train.Features(feature={
        'image/encoded': self._BytesFeature(encoded_jpeg),
        'image/format': self._BytesFeature('jpeg'),
        'image/object/is_crowd': self._Int64Feature(object_is_crowd),
    })).SerializeToString()

    example_decoder = tf_example_decoder.TfExampleDecoder()
    tensor_dict = example_decoder.Decode(tf.convert_to_tensor(example))

    self.assertAllEqual((tensor_dict[
        fields.InputDataFields.groundtruth_is_crowd].get_shape().as_list()),
                        [None])
    with self.test_session() as sess:
      tensor_dict = sess.run(tensor_dict)

    self.assertAllEqual([bool(item) for item in object_is_crowd],
                        tensor_dict[
                            fields.InputDataFields.groundtruth_is_crowd]) 
開發者ID:datitran,項目名稱:object_detector_app,代碼行數:24,代碼來源:tf_example_decoder_test.py


注:本文中的numpy.bool方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。