本文整理匯總了Python中numpy.average方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.average方法的具體用法?Python numpy.average怎麽用?Python numpy.average使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類numpy
的用法示例。
在下文中一共展示了numpy.average方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: reduce_fit
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import average [as 別名]
def reduce_fit(interface, state, label, inp):
import numpy as np
out = interface.output(0)
out.add("X_names", state["X_names"])
forest = []
group_fillins = []
for i, (k, value) in enumerate(inp):
if k == "tree":
forest.append(value)
elif len(value) > 0:
group_fillins.append(value)
out.add("forest", forest)
fill_in_values = []
if len(group_fillins) > 0:
for i, type in enumerate(state["X_meta"]):
if type == "c":
fill_in_values.append(np.average([sample[i] for sample in group_fillins]))
else:
fill_in_values.append(np.bincount([sample[i] for sample in group_fillins]).argmax())
out.add("fill_in_values", fill_in_values)
示例2: compute_mean_ci
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import average [as 別名]
def compute_mean_ci(interp_sens, confidence = 0.95):
sens_mean = np.zeros((interp_sens.shape[1]),dtype = 'float32')
sens_lb = np.zeros((interp_sens.shape[1]),dtype = 'float32')
sens_up = np.zeros((interp_sens.shape[1]),dtype = 'float32')
Pz = (1.0-confidence)/2.0
print(interp_sens.shape)
for i in range(interp_sens.shape[1]):
# get sorted vector
vec = interp_sens[:,i]
vec.sort()
sens_mean[i] = np.average(vec)
sens_lb[i] = vec[int(math.floor(Pz*len(vec)))]
sens_up[i] = vec[int(math.floor((1.0-Pz)*len(vec)))]
return sens_mean,sens_lb,sens_up
示例3: ensemble_image
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import average [as 別名]
def ensemble_image(files, dirs, ensembling_dir, strategy):
for file in files:
images = []
for dir in dirs:
file_path = os.path.join(dir, file)
if os.path.exists(file_path):
images.append(imread(file_path, mode='L'))
images = np.array(images)
if strategy == 'average':
ensembled = average_strategy(images)
elif strategy == 'hard_voting':
ensembled = hard_voting(images)
else:
raise ValueError('Unknown ensembling strategy')
imsave(os.path.join(ensembling_dir, file), ensembled)
示例4: pprint
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import average [as 別名]
def pprint(self, name, window=None, prefix=None):
str_losses = []
for key, loss in self.losses.items():
if loss is None:
continue
aver_loss = np.average(loss) if window is None else np.average(loss[-window:])
if 'nll' in key:
str_losses.append('{} PPL {:.3f}'.format(key, np.exp(aver_loss)))
else:
str_losses.append('{} {:.3f}'.format(key, aver_loss))
if prefix:
return '{}: {} {}'.format(prefix, name, ' '.join(str_losses))
else:
return '{} {}'.format(name, ' '.join(str_losses))
示例5: validate_rl
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import average [as 別名]
def validate_rl(dialog_eval, ctx_gen, num_episode=200):
print("Validate on training goals for {} episode".format(num_episode))
reward_list = []
agree_list = []
sent_metric = UniquenessSentMetric()
word_metric = UniquenessWordMetric()
for _ in range(num_episode):
ctxs = ctx_gen.sample()
conv, agree, rewards = dialog_eval.run(ctxs)
true_reward = rewards[0] if agree else 0
reward_list.append(true_reward)
agree_list.append(float(agree if agree is not None else 0.0))
for turn in conv:
if turn[0] == 'System':
sent_metric.record(turn[1])
word_metric.record(turn[1])
results = {'sys_rew': np.average(reward_list),
'avg_agree': np.average(agree_list),
'sys_sent_unique': sent_metric.value(),
'sys_unique': word_metric.value()}
return results
示例6: record_rl_task
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import average [as 別名]
def record_rl_task(n_epsd, dialog, goal_gen, rl_f):
conv_list = []
reward_list = []
sent_metric = UniquenessSentMetric()
word_metric = UniquenessWordMetric()
print("Begin RL testing")
cnt = 0
for g_key, goal in goal_gen.iter(1):
cnt += 1
conv, success = dialog.run(g_key, goal)
true_reward = success
reward_list.append(true_reward)
conv_list.append(conv)
for turn in conv:
if turn[0] == 'System':
sent_metric.record(turn[1])
word_metric.record(turn[1])
# json.dump(conv_list, text_f, indent=4)
aver_reward = np.average(reward_list)
unique_sent_num = sent_metric.value()
unique_word_num = word_metric.value()
rl_f.write('{}\t{}\t{}\t{}\n'.format(n_epsd, aver_reward, unique_sent_num, unique_word_num))
rl_f.flush()
print("End RL testing")
示例7: _sim_tdcs_pair
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import average [as 別名]
def _sim_tdcs_pair(mesh, cond, ref_electrode, el_surf, el_c, units, solver_options):
logger.info('Simulating electrode pair {0} - {1}'.format(
ref_electrode, el_surf))
S = FEMSystem.tdcs(mesh, cond, [ref_electrode, el_surf], [0., 1.],
solver_options=solver_options)
v = S.solve()
v = mesh_io.NodeData(v, name='v', mesh=mesh)
flux = np.array([
_calc_flux_electrodes(v, cond,
[el_surf - 1000, el_surf - 600,
el_surf - 2000, el_surf - 1600],
units=units),
_calc_flux_electrodes(v, cond,
[ref_electrode - 1000, ref_electrode - 600,
ref_electrode - 2000, ref_electrode - 1600],
units=units)])
current = np.average(np.abs(flux))
error = np.abs(np.abs(flux[0]) - np.abs(flux[1])) / current
logger.info('Estimated current calibration error: {0:.1%}'.format(error))
return el_c / current * v.value
示例8: _lp_variables
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import average [as 別名]
def _lp_variables(l, target_mean, max_total_current, max_el_current):
n = l.shape[1]
if max_el_current is None and max_total_current is None:
raise ValueError(
'max_el_current and max_total_current can be simultaneously None')
if max_total_current is not None:
A_ub = [np.ones((1, 2 * n))]
b_ub = [2 * max_total_current]
else:
A_ub = []
b_ub = []
#Constraint on target intensity
l_ = np.hstack([l, -l])
# the LP will maximize the average of all targets, and limit the electric field
# at each individual target
l_avg = np.average(l_, axis=0)
A_ub = np.vstack(A_ub + [l_])
b_ub = np.hstack(b_ub + [target_mean])
A_eq = np.hstack([np.ones((1, n)), -np.ones((1, n))])
b_eq = np.array([0.])
bounds = (0, max_el_current)
return l_avg, A_ub, b_ub, A_eq, b_eq, bounds
示例9: test_2_targets_field_component
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import average [as 別名]
def test_2_targets_field_component(self, optimization_variables_avg):
l, Q, A = optimization_variables_avg
l2 = l[::-1]
l = np.vstack([l ,l2])
m = 2e-3
m1 = 4e-3
x = optimization_methods.optimize_field_component(l, max_el_current=m,
max_total_current=m1)
l_avg = np.average(l, axis=0)
x_sp = optimize_comp(l_avg, np.ones_like(l2), max_el_current=m, max_total_current=m1)
assert np.linalg.norm(x, 1) <= 2 * m1 + 1e-4
assert np.all(np.abs(x) <= m + 1e-6)
assert np.isclose(l_avg.dot(x), l_avg.dot(x_sp),
rtol=1e-4, atol=1e-4)
assert np.isclose(np.sum(x), 0)
示例10: generate_average_feature
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import average [as 別名]
def generate_average_feature(self, labels):
#extract feature/classifier
u_feas, fcs = self.get_feature(self.u_data) #2048, 1024
#images of the same cluster
label_to_images = {}
for idx, l in enumerate(labels):
self.label_to_images[l] = self.label_to_images.get(l, []) + [idx]
#label_to_image: key is a label and USAGE u_data[label_to_images[key]]=key to set the new label
# used from u_data to re-arrange them to label index array
sort_image_by_label = list(itertools.chain.from_iterable([label_to_images[key] for key in sorted(label_to_images.keys())]))
# USAGE u_data[sort_image_by_label] then the data is sorted according to its class label
#calculate average feature/classifier of a cluster
feature_avg = np.zeros((len(label_to_images), len(u_feas[0])))
fc_avg = np.zeros((len(label_to_images), len(fcs[0])))
for l in label_to_images:
feas = u_feas[label_to_images[l]]
feature_avg[l] = np.mean(feas, axis=0)
fc_avg[l] = np.mean(fcs[label_to_images[l]], axis=0)
return u_feas, feature_avg, label_to_images, fc_avg # [m 2048], [c 2018] [] [c 1024]
示例11: linkage_calculation
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import average [as 別名]
def linkage_calculation(self, dist, labels, penalty):
cluster_num = len(self.label_to_images.keys())
start_index = np.zeros(cluster_num,dtype=np.int)
end_index = np.zeros(cluster_num,dtype=np.int)
counts=0
i=0
for key in sorted(self.label_to_images.keys()):
start_index[i] = counts
end_index[i] = counts + len(self.label_to_images[key])
counts = end_index[i]
i=i+1
dist=dist.numpy()
linkages = np.zeros([cluster_num, cluster_num])
for i in range(cluster_num):
for j in range(i, cluster_num):
linkage = dist[start_index[i]:end_index[i], start_index[j]:end_index[j]]
linkages[i,j] = np.average(linkage)
linkages = linkages.T + linkages - linkages * np.eye(cluster_num)
intra = linkages.diagonal()
penalized_linkages = linkages + penalty * ((intra * np.ones_like(linkages)).T + intra).T
return linkages, penalized_linkages
示例12: utt_scores
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import average [as 別名]
def utt_scores(scores, scp, utt2label):
"""return predictions and labels per utterance
"""
utt2len = ako.read_key_len(scp)
utt2label = ako.read_key_label(utt2label)
key_list = ako.read_all_key(scp)
preds, labels = [], []
idx = 0
for key in key_list:
frames_per_utt = utt2len[key]
avg_scores = np.average(scores[idx:idx+frames_per_utt])
idx = idx + frames_per_utt
preds.append(avg_scores)
labels.append(utt2label[key])
return np.array(preds), np.array(labels)
示例13: compute_loss
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import average [as 別名]
def compute_loss(model, device, data_loader):
model.eval()
loss = 0
correct = 0
scores = []
with torch.no_grad():
for data, target in data_loader:
data, target = data.to(device), target.to(device)
target = target.view(-1,1).float()
#output, hidden = model(data, None)
output = model(data)
loss += F.binary_cross_entropy(output, target, size_average=False)
scores.append(output.data.cpu().numpy())
loss /= len(data_loader.dataset) # average loss
scores = np.vstack(scores) # scores per frame
return loss, scores
示例14: compute_loss
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import average [as 別名]
def compute_loss(model, device, data_loader, threshold=0.5):
model.eval()
loss = 0
correct = 0
scores = []
with torch.no_grad():
for data, target in data_loader:
data, target = data.to(device), target.to(device)
target = target.view(-1,1).float()
#output, hidden = model(data, None)
output = model(data)
loss += F.binary_cross_entropy(output, target, size_average=False)
pred = output > 0.5
correct += pred.byte().eq(target.byte()).sum().item() # not really meaningful
scores.append(output.data.cpu().numpy())
loss /= len(data_loader.dataset) # average loss
scores = np.vstack(scores) # scores per frame
return loss, scores, correct
示例15: compute_utt_eer
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import average [as 別名]
def compute_utt_eer(scores, scp, utt2label, threshold):
"""utterance-based eer
"""
utt2len = ako.read_key_len(scp)
utt2label = ako.read_key_label(utt2label)
key_list = ako.read_all_key(scp)
preds, labels = [], []
idx = 0
for key in key_list:
frames_per_utt = utt2len[key]
avg_scores = np.average(scores[idx:idx+frames_per_utt])
idx = idx + frames_per_utt
if avg_scores < threshold:
preds.append(0)
else: preds.append(1)
labels.append(utt2label[key])
eer = compute_eer(labels, preds)
confuse_mat = compute_confuse(labels, preds)
return eer, confuse_mat