當前位置: 首頁>>代碼示例>>Python>>正文


Python numpy.atleast_2d方法代碼示例

本文整理匯總了Python中numpy.atleast_2d方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.atleast_2d方法的具體用法?Python numpy.atleast_2d怎麽用?Python numpy.atleast_2d使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在numpy的用法示例。


在下文中一共展示了numpy.atleast_2d方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: kernel_matrix_xX

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import atleast_2d [as 別名]
def kernel_matrix_xX(svm_model, original_x, original_X):

        if (svm_model.svm_kernel == 'polynomial_kernel' or svm_model.svm_kernel == 'soft_polynomial_kernel'):
            K = (svm_model.zeta + svm_model.gamma * np.dot(original_x, original_X.T)) ** svm_model.Q
        elif (svm_model.svm_kernel == 'gaussian_kernel' or svm_model.svm_kernel == 'soft_gaussian_kernel'):
            K = np.exp(-svm_model.gamma * (cdist(original_X, np.atleast_2d(original_x), 'euclidean').T ** 2)).ravel()

        '''
        K = np.zeros((svm_model.data_num, svm_model.data_num))

        for i in range(svm_model.data_num):
            for j in range(svm_model.data_num):
                if (svm_model.svm_kernel == 'polynomial_kernel' or svm_model.svm_kernel == 'soft_polynomial_kernel'):
                    K[i, j] = Kernel.polynomial_kernel(svm_model, original_x, original_X[j])
                elif (svm_model.svm_kernel == 'gaussian_kernel' or svm_model.svm_kernel == 'soft_gaussian_kernel'):
                    K[i, j] = Kernel.gaussian_kernel(svm_model, original_x, original_X[j])
        '''

        return K 
開發者ID:fukuball,項目名稱:fuku-ml,代碼行數:21,代碼來源:Utility.py

示例2: invertFast

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import atleast_2d [as 別名]
def invertFast(A, d):
	"""
	given an array A of shape d x k and a d x 1 vector d, computes (A * A.T + diag(d)) ^{-1}
	Checked.
	"""
	assert(A.shape[0] == d.shape[0])
	assert(d.shape[1] == 1)

	k = A.shape[1]
	A = np.array(A)
	d_vec = np.array(d)
	d_inv = np.array(1 / d_vec[:, 0])

	inv_d_squared = np.dot(np.atleast_2d(d_inv).T, np.atleast_2d(d_inv))
	M = np.diag(d_inv) - inv_d_squared * np.dot(np.dot(A, np.linalg.inv(np.eye(k, k) + np.dot(A.T, mult_diag(d_inv, A)))), A.T)

	return M 
開發者ID:epierson9,項目名稱:ZIFA,代碼行數:19,代碼來源:ZIFA.py

示例3: pop_from_array_or_individual

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import atleast_2d [as 別名]
def pop_from_array_or_individual(array, pop=None):
    # the population type can be different - (different type of individuals)
    if pop is None:
        pop = Population()

    # provide a whole population object - (individuals might be already evaluated)
    if isinstance(array, Population):
        pop = array
    elif isinstance(array, np.ndarray):
        pop = pop.new("X", np.atleast_2d(array))
    elif isinstance(array, Individual):
        pop = Population(1)
        pop[0] = array
    else:
        return None

    return pop 
開發者ID:msu-coinlab,項目名稱:pymoo,代碼行數:19,代碼來源:population.py

示例4: __init__

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import atleast_2d [as 別名]
def __init__(self,
                 X,
                 dX=None,
                 objective=0,
                 display=SingleObjectiveDisplay(),
                 **kwargs) -> None:
        super().__init__(display=display, **kwargs)

        self.objective = objective
        self.n_restarts = 0
        self.default_termination = SingleObjectiveDefaultTermination()

        self.X, self.dX = X, dX
        self.F, self.CV = None, None

        if self.X.ndim == 1:
            self.X = np.atleast_2d(X) 
開發者ID:msu-coinlab,項目名稱:pymoo,代碼行數:19,代碼來源:so_gradient_descent.py

示例5: makeadmask

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import atleast_2d [as 別名]
def makeadmask(cdat,min=True,getsum=False):

	nx,ny,nz,Ne,nt = cdat.shape

	mask = np.ones((nx,ny,nz),dtype=np.bool)

	if min:
		mask = cdat[:,:,:,:,:].prod(axis=-1).prod(-1)!=0
		return mask
	else:
		#Make a map of longest echo that a voxel can be sampled with,
		#with minimum value of map as X value of voxel that has median
		#value in the 1st echo. N.b. larger factor leads to bias to lower TEs
		emeans = cdat[:,:,:,:,:].mean(-1)
		medv = emeans[:,:,:,0] == stats.scoreatpercentile(emeans[:,:,:,0][emeans[:,:,:,0]!=0],33,interpolation_method='higher')
		lthrs = np.squeeze(np.array([ emeans[:,:,:,ee][medv]/3 for ee in range(Ne) ]))
		if len(lthrs.shape)==1: lthrs = np.atleast_2d(lthrs).T
		lthrs = lthrs[:,lthrs.sum(0).argmax()]
		mthr = np.ones([nx,ny,nz,ne])
		for ee in range(Ne): mthr[:,:,:,ee]*=lthrs[ee]
		mthr = np.abs(emeans[:,:,:,:])>mthr
		masksum = np.array(mthr,dtype=np.int).sum(-1)
		mask = masksum!=0
		if getsum: return mask,masksum
		else: return mask 
開發者ID:ME-ICA,項目名稱:me-ica,代碼行數:27,代碼來源:tedana.py

示例6: _move_point

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import atleast_2d [as 別名]
def _move_point(new_position, to_be_moved, nodes, triangles, min_angle=0.25,
                edge_list=None, kdtree=None):
    '''Moves one point to the new_position. The angle of the patch should not become less
    than min_angle (in radians) '''
    # Certify that the new_position is inside the patch
    tr = _triangle_with_points(np.atleast_2d(new_position), triangles, nodes,
                               edge_list=edge_list, kdtree=kdtree)
    tr_with_node = np.where(np.any(triangles == to_be_moved, axis=1))[0]
    patch = triangles[tr_with_node]
    if not np.in1d(tr, tr_with_node):
        return None, None
    new_nodes = np.copy(nodes)
    position = nodes[to_be_moved]
    d = new_position - position
    # Start from the full move and go back
    for t in np.linspace(0, 1, num=10)[::-1]:
        new_nodes[to_be_moved] = position + t*d
        angle = np.min(_calc_triangle_angles(new_nodes[patch]))
        if angle > min_angle:
            break
    # Return the new node list and the minimum angle in the patch
    return new_nodes, angle 
開發者ID:simnibs,項目名稱:simnibs,代碼行數:24,代碼來源:electrode_placement.py

示例7: apply_to_solution

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import atleast_2d [as 別名]
def apply_to_solution(self, x, dof_map):
        ''' Applies the dirichlet BC to a solution
        Parameters:
        -------
        x: numpy array
            Righ-hand side
        dof_map: dofMap
            Mapping of node indexes to rows and columns in A and b

        Returns:
        ------
        x: numpy array
            Righ-hand side, modified
        dof_map: dofMap
            Mapping of node indexes to rows and columns in A and b, modified
        '''
        if np.any(np.in1d(self.nodes, dof_map.inverse)):
            raise ValueError('Found DOFs already defined')
        dof_inverse = np.hstack((dof_map.inverse, self.nodes))
        x = np.atleast_2d(x)
        if x.shape[0] < x.shape[1]:
            x = x.T
        x = np.vstack((x, np.tile(self.values, (x.shape[1], 1)).T))
        return x, dofMap(dof_inverse) 
開發者ID:simnibs,項目名稱:simnibs,代碼行數:26,代碼來源:fem.py

示例8: test_bb_full

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import atleast_2d [as 別名]
def test_bb_full(self, optimization_variables_avg):
        l, Q, A = optimization_variables_avg
        m = 2e-3
        m1 = 4e-3
        f = 1e-2
        max_active = 2
        init = optimization_methods.bb_state([], [], list(range(len(l))))
        bf = functools.partial(
            optimization_methods._bb_bounds_function,
            np.atleast_2d(l), Q, f, m1, m, max_active)
        final_state = optimization_methods._branch_and_bound(
            init, bf, 1e-2, 100)
        x = final_state.x_lb
        assert np.linalg.norm(x, 1) <= 2 * m1 + 1e-4
        assert np.linalg.norm(x, 0) <= max_active
        assert np.all(np.abs(x) <= m + 1e-4)
        assert np.isclose(np.sum(x), 0)
        assert np.isclose(l.dot(x), f) 
開發者ID:simnibs,項目名稱:simnibs,代碼行數:20,代碼來源:test_optimization_methods.py

示例9: grad_dot

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import atleast_2d [as 別名]
def grad_dot(dy, x1, x2):
  """Gradient of NumPy dot product w.r.t. to the left hand side.

  Args:
    dy: The gradient with respect to the output.
    x1: The left hand side of the `numpy.dot` function.
    x2: The right hand side

  Returns:
    The gradient with respect to `x1` i.e. `x2.dot(dy.T)` with all the
    broadcasting involved.
  """
  if len(numpy.shape(x1)) == 1:
    dy = numpy.atleast_2d(dy)
  elif len(numpy.shape(x2)) == 1:
    dy = numpy.transpose(numpy.atleast_2d(dy))
    x2 = numpy.transpose(numpy.atleast_2d(x2))
  x2_t = numpy.transpose(numpy.atleast_2d(
      numpy.sum(x2, axis=tuple(numpy.arange(numpy.ndim(x2) - 2)))))
  dy_x2 = numpy.sum(dy, axis=tuple(-numpy.arange(numpy.ndim(x2) - 2) - 2))
  return numpy.reshape(numpy.dot(dy_x2, x2_t), numpy.shape(x1)) 
開發者ID:google,項目名稱:tangent,代碼行數:23,代碼來源:utils.py

示例10: predict_log_proba

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import atleast_2d [as 別名]
def predict_log_proba(self, X):
        """
        Return log-probability estimates for the test vector X.

        Parameters
        ----------
        X : array-like, shape = [n_samples, n_features]

        Returns
        -------
        C : array-like, shape = [n_samples, n_classes]
            Returns the log-probability of the samples for each class in
            the model. The columns correspond to the classes in sorted
            order, as they appear in the attribute `classes_`.
        """
        jll = self._joint_log_likelihood(X)

        # normalize by P(x) = P(f_1, ..., f_n)
        log_prob_x = logsumexp(jll, axis=1)  # return shape = (2,)

        return jll - np.atleast_2d(log_prob_x).T 
開發者ID:J535D165,項目名稱:recordlinkage,代碼行數:23,代碼來源:nb_sklearn.py

示例11: sparse_to_dense

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import atleast_2d [as 別名]
def sparse_to_dense(voxel_data, dims, dtype=np.bool):
    if voxel_data.ndim != 2 or voxel_data.shape[0] != 3:
        raise ValueError('voxel_data is wrong shape; should be 3xN array.')
    if np.isscalar(dims):
        dims = [dims] * 3
    dims = np.atleast_2d(dims).T
    # truncate to integers
    xyz = voxel_data.astype(np.int)
    # discard voxels that fall outside dims
    valid_ix = ~np.any((xyz < 0) | (xyz >= dims), 0)
    xyz = xyz[:, valid_ix]
    out = np.zeros(dims.flatten(), dtype=dtype)
    out[tuple(xyz)] = True
    return out

# def get_linear_index(x, y, z, dims):
# """ Assuming xzy order. (y increasing fastest.
# TODO ensure this is right when dims are not all same
# """
# return x*(dims[1]*dims[2]) + z*dims[1] + y 
開發者ID:chrischoy,項目名稱:3D-R2N2,代碼行數:22,代碼來源:binvox_rw.py

示例12: to_native_types

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import atleast_2d [as 別名]
def to_native_types(self, slicer=None, na_rep=None, date_format=None,
                        quoting=None, **kwargs):
        """ convert to our native types format, slicing if desired """

        values = self.values
        i8values = self.values.view('i8')

        if slicer is not None:
            i8values = i8values[..., slicer]

        from pandas.io.formats.format import _get_format_datetime64_from_values
        fmt = _get_format_datetime64_from_values(values, date_format)

        result = tslib.format_array_from_datetime(
            i8values.ravel(), tz=getattr(self.values, 'tz', None),
            format=fmt, na_rep=na_rep).reshape(i8values.shape)
        return np.atleast_2d(result) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:19,代碼來源:blocks.py

示例13: fit_transform

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import atleast_2d [as 別名]
def fit_transform(self, X, y=None):
        """Apply dimensionality reduction on X

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)
            New data, where n_samples in the number of samples
            and n_features is the number of features. Sparse matrix allowed.

        Returns
        -------
        doc_topic : array-like, shape (n_samples, n_topics)
            Point estimate of the document-topic distributions

        """

        if isinstance(X, np.ndarray):
            # in case user passes a (non-sparse) array of shape (n_features,)
            # turn it into an array of shape (1, n_features)
            X = np.atleast_2d(X)
        self._fit(X)
        return self.doc_topic_ 
開發者ID:armor-ai,項目名稱:IDEA,代碼行數:24,代碼來源:onlineLDA.py

示例14: __init__

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import atleast_2d [as 別名]
def __init__(self, dataset):
        self.dataset = atleast_2d(dataset)
        if not self.dataset.size > 1:
            raise ValueError("`dataset` input should have multiple elements.")

        self.d, self.n = self.dataset.shape
        self._compute_covariance() 
開發者ID:svviz,項目名稱:svviz,代碼行數:9,代碼來源:kde.py

示例15: evaluate

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import atleast_2d [as 別名]
def evaluate(self, points):
        points = atleast_2d(points)

        d, m = points.shape
        if d != self.d:
            if d == 1 and m == self.d:
                # points was passed in as a row vector
                points = reshape(points, (self.d, 1))
                m = 1
            else:
                msg = "points have dimension %s, dataset has dimension %s" % (d,
                    self.d)
                raise ValueError(msg)

        result = zeros((m,), dtype=np.float)

        if m >= self.n:
            # there are more points than data, so loop over data
            for i in range(self.n):
                diff = self.dataset[:, i, newaxis] - points
                tdiff = dot(self.inv_cov, diff)
                energy = sum(diff*tdiff,axis=0) / 2.0
                result = result + exp(-energy)
        else:
            # loop over points
            for i in range(m):
                diff = self.dataset - points[:, i, newaxis]
                tdiff = dot(self.inv_cov, diff)
                energy = sum(diff * tdiff, axis=0) / 2.0
                result[i] = sum(exp(-energy), axis=0)

        result = result / self._norm_factor

        return result 
開發者ID:svviz,項目名稱:svviz,代碼行數:36,代碼來源:kde.py


注:本文中的numpy.atleast_2d方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。