本文整理匯總了Python中numpy.asmatrix方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.asmatrix方法的具體用法?Python numpy.asmatrix怎麽用?Python numpy.asmatrix使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類numpy
的用法示例。
在下文中一共展示了numpy.asmatrix方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: add_pixels
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import asmatrix [as 別名]
def add_pixels(self, uv_px, img1d, weight=None):
# Lookup row & column for each in-bounds coordinate.
mask = self.get_mask(uv_px)
xx = uv_px[0,mask]
yy = uv_px[1,mask]
# Update matrix according to assigned weight.
if weight is None:
img1d[mask] = self.img[yy,xx]
elif np.isscalar(weight):
img1d[mask] += self.img[yy,xx] * weight
else:
w1 = np.asmatrix(weight, dtype='float32')
w3 = w1.transpose() * np.ones((1,3))
img1d[mask] += np.multiply(self.img[yy,xx], w3[mask])
# A panorama image made from several FisheyeImage sources.
# TODO: Add support for supersampled anti-aliasing filters.
示例2: transform
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import asmatrix [as 別名]
def transform(info, sin, sout, sxtra, board, opts, vars):
if vars['loaded']:
sess = vars['sess']
x = vars['x']
y = vars['y']
ph_n_shuffle = vars['ph_n_shuffle']
ph_n_repeat = vars['ph_n_repeat']
ph_n_batch = vars['ph_n_batch']
init = vars['init']
logits = vars['logits']
input = np.asmatrix(sin).reshape(-1, x.shape[1])
dummy = np.zeros((input.shape[0],), dtype=np.int32)
sess.run(init, feed_dict = { x : input, y : dummy, ph_n_shuffle : 1, ph_n_repeat : 1, ph_n_batch : input.shape[0] })
output = sess.run(logits)
output = np.mean(output, axis=0)
for i in range(sout.dim):
sout[i] = output[i]
示例3: label_relevance_score
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import asmatrix [as 別名]
def label_relevance_score(self,
topic_models,
pmi_w2l):
"""
Calculate the relevance scores between each label and each topic
Parameters:
---------------
topic_models: numpy.ndarray(#topics, #words)
the topic models
pmi_w2l: numpy.ndarray(#words, #labels)
the Point-wise Mutual Information(PMI) table of
the form, PMI(w, l | C)
Returns;
-------------
numpy.ndarray, shape (#topics, #labels)
the scores of each label on each topic
"""
assert topic_models.shape[1] == pmi_w2l.shape[0]
return np.asarray(np.asmatrix(topic_models) *
np.asmatrix(pmi_w2l))
示例4: test_return_type
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import asmatrix [as 別名]
def test_return_type(self):
a = np.ones([2, 2])
m = np.asmatrix(a)
assert_equal(type(kron(a, a)), np.ndarray)
assert_equal(type(kron(m, m)), np.matrix)
assert_equal(type(kron(a, m)), np.matrix)
assert_equal(type(kron(m, a)), np.matrix)
class myarray(np.ndarray):
__array_priority__ = 0.0
ma = myarray(a.shape, a.dtype, a.data)
assert_equal(type(kron(a, a)), np.ndarray)
assert_equal(type(kron(ma, ma)), myarray)
assert_equal(type(kron(a, ma)), np.ndarray)
assert_equal(type(kron(ma, a)), myarray)
示例5: coherence_of_columns
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import asmatrix [as 別名]
def coherence_of_columns(A):
"""Mutual coherence of columns of A.
Parameters
----------
A : array_like
Input matrix.
p : int, optional
p-th norm.
Returns
-------
array_like
Mutual coherence of columns of A.
"""
A = np.asmatrix(A)
_, N = A.shape
A = A * np.asmatrix(np.diag(1/norm_of_columns(A)))
Gram_A = A.H*A
for j in range(N):
Gram_A[j, j] = 0
return np.max(np.abs(Gram_A))
示例6: get_correlated_geometric_brownian_motions
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import asmatrix [as 別名]
def get_correlated_geometric_brownian_motions(params: ModelParameters,
correlation_matrix: np.array,
n: int):
"""
Constructs a basket of correlated asset paths using the Cholesky
decomposition method.
Arguments:
params : ModelParameters
The parameters for the stochastic model.
correlation_matrix : np.array
An n x n correlation matrix.
n : int
Number of assets (number of paths to return)
Returns:
n correlated log return geometric brownian motion processes
"""
decomposition = sp.linalg.cholesky(correlation_matrix, lower=False)
uncorrelated_paths = []
sqrt_delta_sigma = np.sqrt(params.all_delta) * params.all_sigma
# Construct uncorrelated paths to convert into correlated paths
for i in range(params.all_time):
uncorrelated_random_numbers = []
for j in range(n):
uncorrelated_random_numbers.append(random.normalvariate(0, sqrt_delta_sigma))
uncorrelated_paths.append(np.array(uncorrelated_random_numbers))
uncorrelated_matrix = np.asmatrix(uncorrelated_paths)
correlated_matrix = uncorrelated_matrix * decomposition
assert isinstance(correlated_matrix, np.matrix)
# The rest of this method just extracts paths from the matrix
extracted_paths = []
for i in range(1, n + 1):
extracted_paths.append([])
for j in range(0, len(correlated_matrix) * n - n, n):
for i in range(n):
extracted_paths[i].append(correlated_matrix.item(j + i))
return extracted_paths
示例7: test_fancy_indexing
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import asmatrix [as 別名]
def test_fancy_indexing():
# The matrix class messes with the shape. While this is always
# weird (getitem is not used, it does not have setitem nor knows
# about fancy indexing), this tests gh-3110
# 2018-04-29: moved here from core.tests.test_index.
m = np.matrix([[1, 2], [3, 4]])
assert_(isinstance(m[[0, 1, 0], :], np.matrix))
# gh-3110. Note the transpose currently because matrices do *not*
# support dimension fixing for fancy indexing correctly.
x = np.asmatrix(np.arange(50).reshape(5, 10))
assert_equal(x[:2, np.array(-1)], x[:2, -1].T)
示例8: test_asmatrix
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import asmatrix [as 別名]
def test_asmatrix(self):
A = np.arange(100).reshape(10, 10)
mA = asmatrix(A)
A[0, 0] = -10
assert_(A[0, 0] == mA[0, 0])
示例9: test_basic
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import asmatrix [as 別名]
def test_basic(self):
x = asmatrix(np.zeros((3, 2), float))
y = np.zeros((3, 1), float)
y[:, 0] = [0.8, 0.2, 0.3]
x[:, 1] = y > 0.5
assert_equal(x, [[0, 1], [0, 0], [0, 0]])
示例10: test_scalar_indexing
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import asmatrix [as 別名]
def test_scalar_indexing(self):
x = asmatrix(np.zeros((3, 2), float))
assert_equal(x[0, 0], x[0][0])
示例11: test_row_column_indexing
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import asmatrix [as 別名]
def test_row_column_indexing(self):
x = asmatrix(np.eye(2))
assert_array_equal(x[0,:], [[1, 0]])
assert_array_equal(x[1,:], [[0, 1]])
assert_array_equal(x[:, 0], [[1], [0]])
assert_array_equal(x[:, 1], [[0], [1]])
示例12: test_boolean_indexing
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import asmatrix [as 別名]
def test_boolean_indexing(self):
A = np.arange(6)
A.shape = (3, 2)
x = asmatrix(A)
assert_array_equal(x[:, np.array([True, False])], x[:, 0])
assert_array_equal(x[np.array([True, False, False]),:], x[0,:])
示例13: test_matrix_std_argmax
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import asmatrix [as 別名]
def test_matrix_std_argmax(self):
# Ticket #83
x = np.asmatrix(np.random.uniform(0, 1, (3, 3)))
assert_equal(x.std().shape, ())
assert_equal(x.argmax().shape, ())
示例14: improve_admm
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import asmatrix [as 別名]
def improve_admm(x0, prob, *args, **kwargs):
num_iters = kwargs.get('num_iters', 1000)
viol_lim = kwargs.get('viol_lim', 1e4)
tol = kwargs.get('tol', 1e-2)
rho = kwargs.get('rho', None)
phase1 = kwargs.get('phase1', True)
if rho is not None:
lmb0, P0Q = map(np.asmatrix, LA.eigh(prob.f0.P.todense()))
lmb_min = np.min(lmb0)
if lmb_min + prob.m*rho < 0:
logging.error("rho parameter is too small, z-update not convex.")
logging.error("Minimum possible value of rho: %.3f\n", -lmb_min/prob.m)
logging.error("Given value of rho: %.3f\n", rho)
raise Exception("rho parameter is too small, need at least %.3f." % rho)
# TODO: find a reasonable auto parameter
if rho is None:
lmb0, P0Q = map(np.asmatrix, LA.eigh(prob.f0.P.todense()))
lmb_min = np.min(lmb0)
lmb_max = np.max(lmb0)
if lmb_min < 0: rho = 2.*(1.-lmb_min)/prob.m
else: rho = 1./prob.m
rho *= 50.
logging.warning("Automatically setting rho to %.3f", rho)
if phase1:
x1 = prob.better(x0, admm_phase1(x0, prob, tol, num_iters))
else:
x1 = x0
x2 = prob.better(x1, admm_phase2(x1, prob, rho, tol, num_iters, viol_lim))
return x2
示例15: sum
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import asmatrix [as 別名]
def sum(self, axis=None, dtype=None, out=None):
"""Sum the matrix over the given axis. If the axis is None, sum
over both rows and columns, returning a scalar.
"""
# The spmatrix base class already does axis=0 and axis=1 efficiently
# so we only do the case axis=None here
if (not hasattr(self, 'blocksize') and
axis in self._swap(((1, -1), (0, 2)))[0]):
# faster than multiplication for large minor axis in CSC/CSR
res_dtype = get_sum_dtype(self.dtype)
ret = np.zeros(len(self.indptr) - 1, dtype=res_dtype)
major_index, value = self._minor_reduce(np.add)
ret[major_index] = value
ret = np.asmatrix(ret)
if axis % 2 == 1:
ret = ret.T
if out is not None and out.shape != ret.shape:
raise ValueError('dimensions do not match')
return ret.sum(axis=(), dtype=dtype, out=out)
# spmatrix will handle the remaining situations when axis
# is in {None, -1, 0, 1}
else:
return spmatrix.sum(self, axis=axis, dtype=dtype, out=out)