當前位置: 首頁>>代碼示例>>Python>>正文


Python numpy.ascontiguousarray方法代碼示例

本文整理匯總了Python中numpy.ascontiguousarray方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.ascontiguousarray方法的具體用法?Python numpy.ascontiguousarray怎麽用?Python numpy.ascontiguousarray使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在numpy的用法示例。


在下文中一共展示了numpy.ascontiguousarray方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: serialize_ndarray_b64

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ascontiguousarray [as 別名]
def serialize_ndarray_b64(o):
    """
    Serializes a :obj:`numpy.ndarray` in a format where the datatype and shape are
    human-readable, but the array data itself is binary64 encoded.

    Args:
        o (:obj:`numpy.ndarray`): :obj:`ndarray` to be serialized.

    Returns:
        A dictionary that can be passed to :obj:`json.dumps`.
    """
    if o.flags['C_CONTIGUOUS']:
        o_data = o.data
    else:
        o_data = np.ascontiguousarray(o).data
    data_b64 = base64.b64encode(o_data)
    return dict(
        _type='np.ndarray',
        data=data_b64.decode('utf-8'),
        dtype=o.dtype,
        shape=o.shape) 
開發者ID:gregreen,項目名稱:dustmaps,代碼行數:23,代碼來源:json_serializers.py

示例2: tensor2imgs

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ascontiguousarray [as 別名]
def tensor2imgs(tensor, mean=(0, 0, 0), std=(1, 1, 1), to_rgb=True):
    """Convert tensor to images.

    Args:
        tensor (torch.Tensor): Tensor that contains multiple images
        mean (tuple[float], optional): Mean of images. Defaults to (0, 0, 0).
        std (tuple[float], optional): Standard deviation of images.
            Defaults to (1, 1, 1).
        to_rgb (bool, optional): Whether convert the images to RGB format.
            Defaults to True.

    Returns:
        list[np.ndarray]: A list that contains multiple images.
    """
    num_imgs = tensor.size(0)
    mean = np.array(mean, dtype=np.float32)
    std = np.array(std, dtype=np.float32)
    imgs = []
    for img_id in range(num_imgs):
        img = tensor[img_id, ...].cpu().numpy().transpose(1, 2, 0)
        img = mmcv.imdenormalize(
            img, mean, std, to_bgr=to_rgb).astype(np.uint8)
        imgs.append(np.ascontiguousarray(img))
    return imgs 
開發者ID:open-mmlab,項目名稱:mmdetection,代碼行數:26,代碼來源:misc.py

示例3: load_default_object

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ascontiguousarray [as 別名]
def load_default_object(self):
    v = np.array([[0.0, 0.5, 0.0, 1.0, 1.0, 0.0, 1.0],
                  [-0.5, -0.5, 0.0, 1.0, 0.0, 1.0, 1.0],
                  [0.5, -0.5, 0.0, 1.0, 1.0, 1.0, 1.0]], dtype=np.float32)
    v = np.concatenate((v,v+0.1), axis=0)
    v = np.ascontiguousarray(v, dtype=np.float32)

    vbo = glGenBuffers(1)
    glBindBuffer (GL_ARRAY_BUFFER, vbo)
    glBufferData (GL_ARRAY_BUFFER, v.dtype.itemsize*v.size, v, GL_STATIC_DRAW)
    glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 28, ctypes.c_void_p(0))
    glVertexAttribPointer(1, 4, GL_FLOAT, GL_FALSE, 28, ctypes.c_void_p(12))
    glEnableVertexAttribArray(0);
    glEnableVertexAttribArray(1);

    self.num_to_render = 6; 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:18,代碼來源:swiftshader_renderer.py

示例4: _load_mesh_into_gl

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ascontiguousarray [as 別名]
def _load_mesh_into_gl(self, mesh, material):
    vvt = np.concatenate((mesh.vertices, mesh.texturecoords[0,:,:2]), axis=1)
    vvt = np.ascontiguousarray(vvt[mesh.faces.reshape((-1)),:], dtype=np.float32)
    num = vvt.shape[0]
    vvt = np.reshape(vvt, (-1))

    vbo = glGenBuffers(1)
    glBindBuffer(GL_ARRAY_BUFFER, vbo)
    glBufferData(GL_ARRAY_BUFFER, vvt.dtype.itemsize*vvt.size, vvt, GL_STATIC_DRAW)

    tbo = glGenTextures(1)
    glBindTexture(GL_TEXTURE_2D, tbo)
    glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, material.shape[1],
                 material.shape[0], 0, GL_RGB, GL_UNSIGNED_BYTE,
                 np.reshape(material, (-1)))
    return num, vbo, tbo 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:18,代碼來源:swiftshader_renderer.py

示例5: __next__

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ascontiguousarray [as 別名]
def __next__(self):
        self.count += 1
        img0 = self.imgs.copy()
        if cv2.waitKey(1) == ord('q'):  # q to quit
            cv2.destroyAllWindows()
            raise StopIteration

        # Letterbox
        img = [letterbox(x, new_shape=self.img_size, interp=cv2.INTER_LINEAR)[0] for x in img0]

        # Stack
        img = np.stack(img, 0)

        # Normalize RGB
        img = img[:, :, :, ::-1].transpose(0, 3, 1, 2)  # BGR to RGB
        img = np.ascontiguousarray(img, dtype=np.float16 if self.half else np.float32)  # uint8 to fp16/fp32
        img /= 255.0  # 0 - 255 to 0.0 - 1.0

        return self.sources, img, img0, None 
開發者ID:zbyuan,項目名稱:pruning_yolov3,代碼行數:21,代碼來源:datasets.py

示例6: get_screen

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ascontiguousarray [as 別名]
def get_screen(self, env):
        screen = env.render(mode='rgb_array').transpose((2, 0, 1))  # transpose into torch order (CHW)
        # Strip off the top and bottom of the screen
        screen = screen[:, 160:320]
        view_width = 320
        cart_location = self.get_cart_location(env)
        if cart_location < view_width // 2:
            slice_range = slice(view_width)
        elif cart_location > (self.screen_width - view_width // 2):
            slice_range = slice(-view_width, None)
        else:
            slice_range = slice(cart_location - view_width // 2,
                                cart_location + view_width // 2)
        # Strip off the edges, so that we have a square image centered on a cart
        screen = screen[:, :, slice_range]
        # Convert to float, rescale, convert to torch tensor
        screen = np.ascontiguousarray(screen, dtype=np.float32) / 255
        screen = torch.from_numpy(screen)
        # Resize, and add a batch dimension (BCHW)
        return resize(screen).unsqueeze(0) 
開發者ID:moemen95,項目名稱:Pytorch-Project-Template,代碼行數:22,代碼來源:env_utils.py

示例7: default

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ascontiguousarray [as 別名]
def default(self, obj: Any) -> Any:
        try:
            return pydantic_encoder(obj)
        except TypeError:
            pass

        if isinstance(obj, np.ndarray):
            if obj.shape:
                data = {"_nd_": True, "dtype": obj.dtype.str, "data": np.ascontiguousarray(obj).tobytes().hex()}
                if len(obj.shape) > 1:
                    data["shape"] = obj.shape
                return data

            else:
                # Converts np.array(5) -> 5
                return obj.tolist()

        return json.JSONEncoder.default(self, obj) 
開發者ID:MolSSI,項目名稱:QCElemental,代碼行數:20,代碼來源:serialization.py

示例8: _convert_method_output_to_tensor

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ascontiguousarray [as 別名]
def _convert_method_output_to_tensor(file_or_fd: Any,
                                     fn: Callable,
                                     convert_contiguous: bool = False) -> Iterable[Tuple[str, Tensor]]:
    r"""Takes a method invokes it. The output is converted to a tensor.

    Args:
        file_or_fd (str/FileDescriptor): File name or file descriptor
        fn (Callable): Function that has the signature (file name/descriptor) and converts it to
            Iterable[Tuple[str, Tensor]].
        convert_contiguous (bool, optional): Determines whether the array should be converted into a
            contiguous layout. (Default: ``False``)

    Returns:
        Iterable[Tuple[str, Tensor]]: The string is the key and the tensor is vec/mat
    """
    for key, np_arr in fn(file_or_fd):
        if convert_contiguous:
            np_arr = np.ascontiguousarray(np_arr)
        yield key, torch.from_numpy(np_arr) 
開發者ID:pytorch,項目名稱:audio,代碼行數:21,代碼來源:kaldi_io.py

示例9: load_image

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ascontiguousarray [as 別名]
def load_image(img_path, net_input_shape):
    imgBGR = cv2.imread(img_path)
    img = cv2.resize(imgBGR, net_input_shape)
    # BGR -> RGB
    #img = img[:,:, (2, 1, 0)]

    ## Method 1
    # imgT = np.transpose(img, (2, 0, 1))  # c,w,h
    # imgF = np.asarray(imgT, dtype=np.float32)
    # mean = [[[88.159309]], [[97.966286]], [[103.66106]]] # Caffe image mean
    # imgS = np.subtract(imgF,mean)

    ## Method 2
    imgF = np.asarray(img, dtype=np.float32)
    mean = [128.0, 128.0, 128.0] # Caffe image mean
    # mean = [88.159309, 97.966286, 103.66106] # Caffe image mean
    imgSS = np.subtract(imgF, mean)/128.0
    imgS = np.transpose(imgSS, (2, 0, 1))  # c,w,h

    # RGB_MEAN_PIXELS = np.array([88.159309, 97.966286, 103.66106]).reshape((1,1,1,3)).astype(np.float32)

    return imgBGR, np.ascontiguousarray(imgS, dtype=np.float32) # avoid error: ndarray is not contiguous 
開發者ID:aimuch,項目名稱:iAI,代碼行數:24,代碼來源:call_engine_to_infer_all_print_predict_on_image_6classes.py

示例10: load_image

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ascontiguousarray [as 別名]
def load_image(img_path, net_input_shape):
    img = cv2.resize(cv2.imread(img_path), net_input_shape)
    # BGR -> RGB
    #img = img[:,:, (2, 1, 0)]

    ## Method 1
    # imgT = np.transpose(img, (2, 0, 1))  # c,w,h
    # imgF = np.asarray(imgT, dtype=np.float32)
    # mean = [[[88.159309]], [[97.966286]], [[103.66106]]] # Caffe image mean
    # imgS = np.subtract(imgF,mean)

    ## Method 2
    imgF = np.asarray(img, dtype=np.float32)
    mean = [88.159309, 97.966286, 103.66106] # Caffe image mean
    imgSS = np.subtract(imgF, mean)
    imgS = np.transpose(imgSS, (2, 0, 1))  # CHW

    # RGB_MEAN_PIXELS = np.array([88.159309, 97.966286, 103.66106]).reshape((1,1,1,3)).astype(np.float32)

    return np.ascontiguousarray(imgS, dtype=np.float32) # avoid error: ndarray is not contiguous 
開發者ID:aimuch,項目名稱:iAI,代碼行數:22,代碼來源:call_engine_to_infer_all.py

示例11: load_image

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ascontiguousarray [as 別名]
def load_image(img_path, net_input_shape):
    img = cv2.resize(cv2.imread(img_path), net_input_shape)
    # BGR -> RGB
    #img = img[:,:, (2, 1, 0)]

    ## Method 1
    # imgT = np.transpose(img, (2, 0, 1))  # c,w,h
    # imgF = np.asarray(imgT, dtype=np.float32)
    # mean = [[[88.159309]], [[97.966286]], [[103.66106]]] # Caffe image mean
    # imgS = np.subtract(imgF,mean)

    ## Method 2
    imgF = np.asarray(img, dtype=np.float32)
    mean = [88.159309, 97.966286, 103.66106] # Caffe image mean
    imgSS = np.subtract(imgF, mean)
    imgS = np.transpose(imgSS, (2, 0, 1))  # CHW

    # RGB_MEAN_PIXELS = np.array([88.159309, 97.966286, 103.66106]).reshape((1,1,1,3)).astype(np.float32)

    return np.ascontiguousarray(imgS, dtype=np.float32)   # avoid error: ndarray is not contiguous 
開發者ID:aimuch,項目名稱:iAI,代碼行數:22,代碼來源:call_engine_to_infer_one.py

示例12: load_image

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ascontiguousarray [as 別名]
def load_image(img_path, net_input_shape):
    imgBGR = cv2.imread(img_path)
    img = cv2.resize(imgBGR, net_input_shape)
    # BGR -> RGB
    #img = img[:,:, (2, 1, 0)]

    ## Method 1
    # imgT = np.transpose(img, (2, 0, 1))  # c,w,h
    # imgF = np.asarray(imgT, dtype=np.float32)
    # mean = [[[88.159309]], [[97.966286]], [[103.66106]]] # Caffe image mean
    # imgS = np.subtract(imgF,mean)

    ## Method 2
    imgF = np.asarray(img, dtype=np.float32)
    mean = [88.159309, 97.966286, 103.66106] # Caffe image mean
    imgSS = np.subtract(imgF, mean)
    imgS = np.transpose(imgSS, (2, 0, 1))  # c,w,h

    # RGB_MEAN_PIXELS = np.array([88.159309, 97.966286, 103.66106]).reshape((1,1,1,3)).astype(np.float32)

    return imgBGR, np.ascontiguousarray(imgS, dtype=np.float32) # avoid error: ndarray is not contiguous 
開發者ID:aimuch,項目名稱:iAI,代碼行數:23,代碼來源:call_engine_to_infer_all_print_predict_on_image.py

示例13: _fill_hprobs_block

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ascontiguousarray [as 別名]
def _fill_hprobs_block(self, mxToFill, dest_indices, dest_param_indices1,
                           dest_param_indices2, evalTree, param_slice1, param_slice2,
                           comm=None, memLimit=None):
        if param_slice1 is None or param_slice1.start is None: param_slice1 = slice(0, self.Np)
        if param_slice2 is None or param_slice2.start is None: param_slice2 = slice(0, self.Np)
        if dest_param_indices1 is None: dest_param_indices1 = slice(0, _slct.length(param_slice1))
        if dest_param_indices2 is None: dest_param_indices2 = slice(0, _slct.length(param_slice2))

        if self.mode == "direct":
            raise NotImplementedError("hprobs does not support direct path-integral evaluation yet")
            # hprobs = self.hprs_directly(evalTree, ...)
        else:  # "pruned" or "taylor order"
            # evaluate derivative of polys
            nEls = evalTree.num_final_elements()
            polys = evalTree.merged_compact_polys
            wrtInds1 = _np.ascontiguousarray(_slct.indices(param_slice1), _np.int64)
            wrtInds2 = _np.ascontiguousarray(_slct.indices(param_slice2), _np.int64)
            dpolys = _compact_deriv(polys[0], polys[1], wrtInds1)
            hpolys = _compact_deriv(dpolys[0], dpolys[1], wrtInds2)
            hprobs = _safe_bulk_eval_compact_polys(
                hpolys[0], hpolys[1], self.paramvec, (nEls, len(wrtInds1), len(wrtInds2)))
        _fas(mxToFill, [dest_indices, dest_param_indices1, dest_param_indices2], hprobs) 
開發者ID:pyGSTio,項目名稱:pyGSTi,代碼行數:24,代碼來源:termforwardsim.py

示例14: __init__

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ascontiguousarray [as 別名]
def __init__(self, outcomes):
        """
        Initialize a StabilizerEffectVec object.

        Parameters
        ----------
        outcomes : iterable
            A list or other iterable of integer 0 or 1 outcomes specifying
            which POVM effect vector this object represents within the
            full `stabilizerPOVM`
        """
        self._outcomes = _np.ascontiguousarray(_np.array(outcomes, int), _np.int64)
        #Note: dtype='i' => int in Cython, whereas dtype=int/np.int64 => long in Cython
        rep = replib.SBEffectRep(self._outcomes)  # dim == 2**nqubits == 2**len(outcomes)
        SPAMVec.__init__(self, rep, "stabilizer", "effect")

    #def torep(self, typ, outvec=None):
    #    # changes to_statevec/to_dmvec -> todense, and have
    #    # torep create an effect rep object...
    #    return replib.SBEffectRep(_np.ascontiguousarray(self._outcomes, _np.int64)) 
開發者ID:pyGSTio,項目名稱:pyGSTi,代碼行數:22,代碼來源:spamvec.py

示例15: soft_nms

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ascontiguousarray [as 別名]
def soft_nms(
    dets, sigma=0.5, overlap_thresh=0.3, score_thresh=0.001, method='linear'
):
    """Apply the soft NMS algorithm from https://arxiv.org/abs/1704.04503."""
    if dets.shape[0] == 0:
        return dets, []

    methods = {'hard': 0, 'linear': 1, 'gaussian': 2}
    assert method in methods, 'Unknown soft_nms method: {}'.format(method)

    dets, keep = cython_nms.soft_nms(
        np.ascontiguousarray(dets, dtype=np.float32),
        np.float32(sigma),
        np.float32(overlap_thresh),
        np.float32(score_thresh),
        np.uint8(methods[method])
    )
    return dets, keep 
開發者ID:soeaver,項目名稱:Parsing-R-CNN,代碼行數:20,代碼來源:boxes.py


注:本文中的numpy.ascontiguousarray方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。