本文整理匯總了Python中numpy.asarray方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.asarray方法的具體用法?Python numpy.asarray怎麽用?Python numpy.asarray使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類numpy
的用法示例。
在下文中一共展示了numpy.asarray方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: transform
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import asarray [as 別名]
def transform(self, sample):
if not self.model:
if not self.architecture.startswith("@"):
_, self.preprocess_input, self.model = \
get_imagenet_architecture(self.architecture, self.variant, self.size, self.alpha, self.output_layer)
else:
self.model = get_custom_architecture(self.architecture, self.trainings_dir, self.output_layer)
self.preprocess_input = generic_preprocess_input
x = sample.x
x = x.convert('RGB')
x = resize_image(x, self.image_size, self.image_size, 'antialias', 'aspect-fill')
#x = x.resize((self.image_size, self.image_size))
x = np.asarray(x)
x = np.expand_dims(x, axis=0)
x = self.preprocess_input(x)
features = self.model.predict(x)
features = features.flatten()
sample.x = features
sample.y = None
return sample
示例2: variable
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import asarray [as 別名]
def variable(value, dtype=None, name=None):
'''Instantiates a variable and returns it.
# Arguments
value: Numpy array, initial value of the tensor.
dtype: Tensor type.
name: Optional name string for the tensor.
# Returns
A variable instance (with Keras metadata included).
'''
if dtype is None:
dtype = floatx()
if hasattr(value, 'tocoo'):
_assert_sparse_module()
variable = th_sparse_module.as_sparse_variable(value)
else:
value = np.asarray(value, dtype=dtype)
variable = theano.shared(value=value, name=name, strict=False)
variable._keras_shape = value.shape
variable._uses_learning_phase = False
return variable
示例3: cast_to_floatx
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import asarray [as 別名]
def cast_to_floatx(x):
'''Cast a Numpy array to the default Keras float type.
# Arguments
x: Numpy array.
# Returns
The same Numpy array, cast to its new type.
# Example
```python
>>> from keras import backend as K
>>> K.floatx()
'float32'
>>> arr = numpy.array([1.0, 2.0], dtype='float64')
>>> arr.dtype
dtype('float64')
>>> new_arr = K.cast_to_floatx(arr)
>>> new_arr
array([ 1., 2.], dtype=float32)
>>> new_arr.dtype
dtype('float32')
```
'''
return np.asarray(x, dtype=_FLOATX)
示例4: loadW2V
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import asarray [as 別名]
def loadW2V(self,emb_path, type="bin"):
print("Loading W2V data...")
num_keys = 0
if type=="textgz":
# this seems faster than gensim non-binary load
for line in gzip.open(emb_path):
l = line.strip().split()
st=l[0].lower()
self.pre_emb[st]=np.asarray(l[1:])
num_keys=len(self.pre_emb)
if type=="text":
# this seems faster than gensim non-binary load
for line in open(emb_path):
l = line.strip().split()
st=l[0].lower()
self.pre_emb[st]=np.asarray(l[1:])
num_keys=len(self.pre_emb)
else:
self.pre_emb = Word2Vec.load_word2vec_format(emb_path,binary=True)
self.pre_emb.init_sims(replace=True)
num_keys=len(self.pre_emb.vocab)
print("loaded word2vec len ", num_keys)
gc.collect()
示例5: getTsvData
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import asarray [as 別名]
def getTsvData(self, filepath):
print("Loading training data from "+filepath)
x1=[]
x2=[]
y=[]
# positive samples from file
for line in open(filepath):
l=line.strip().split("\t")
if len(l)<2:
continue
if random() > 0.5:
x1.append(l[0].lower())
x2.append(l[1].lower())
else:
x1.append(l[1].lower())
x2.append(l[0].lower())
y.append(int(l[2]))
return np.asarray(x1),np.asarray(x2),np.asarray(y)
示例6: batch_iter
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import asarray [as 別名]
def batch_iter(self, data, batch_size, num_epochs, shuffle=True):
"""
Generates a batch iterator for a dataset.
"""
data = np.asarray(data)
print(data)
print(data.shape)
data_size = len(data)
num_batches_per_epoch = int(len(data)/batch_size) + 1
for epoch in range(num_epochs):
# Shuffle the data at each epoch
if shuffle:
shuffle_indices = np.random.permutation(np.arange(data_size))
shuffled_data = data[shuffle_indices]
else:
shuffled_data = data
for batch_num in range(num_batches_per_epoch):
start_index = batch_num * batch_size
end_index = min((batch_num + 1) * batch_size, data_size)
yield shuffled_data[start_index:end_index]
示例7: create_celeba
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import asarray [as 別名]
def create_celeba(tfrecord_dir, celeba_dir, cx=89, cy=121):
print('Loading CelebA from "%s"' % celeba_dir)
glob_pattern = os.path.join(celeba_dir, 'img_align_celeba_png', '*.png')
image_filenames = sorted(glob.glob(glob_pattern))
expected_images = 202599
if len(image_filenames) != expected_images:
error('Expected to find %d images' % expected_images)
with TFRecordExporter(tfrecord_dir, len(image_filenames)) as tfr:
order = tfr.choose_shuffled_order()
for idx in range(order.size):
img = np.asarray(PIL.Image.open(image_filenames[order[idx]]))
assert img.shape == (218, 178, 3)
img = img[cy - 64 : cy + 64, cx - 64 : cx + 64]
img = img.transpose(2, 0, 1) # HWC => CHW
tfr.add_image(img)
#----------------------------------------------------------------------------
示例8: __init__
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import asarray [as 別名]
def __init__(self, dataset, oversample_thr):
self.dataset = dataset
self.oversample_thr = oversample_thr
self.CLASSES = dataset.CLASSES
repeat_factors = self._get_repeat_factors(dataset, oversample_thr)
repeat_indices = []
for dataset_index, repeat_factor in enumerate(repeat_factors):
repeat_indices.extend([dataset_index] * math.ceil(repeat_factor))
self.repeat_indices = repeat_indices
flags = []
if hasattr(self.dataset, 'flag'):
for flag, repeat_factor in zip(self.dataset.flag, repeat_factors):
flags.extend([flag] * int(math.ceil(repeat_factor)))
assert len(flags) == len(repeat_indices)
self.flag = np.asarray(flags, dtype=np.uint8)
示例9: areas
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import asarray [as 別名]
def areas(self):
"""Compute areas of masks.
This func is modified from
https://github.com/facebookresearch/detectron2/blob/ffff8acc35ea88ad1cb1806ab0f00b4c1c5dbfd9/detectron2/structures/masks.py#L387
Only works with Polygons, using the shoelace formula
Return:
ndarray: areas of each instance
""" # noqa: W501
area = []
for polygons_per_obj in self.masks:
area_per_obj = 0
for p in polygons_per_obj:
area_per_obj += self._polygon_area(p[0::2], p[1::2])
area.append(area_per_obj)
return np.asarray(area)
示例10: predict
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import asarray [as 別名]
def predict(limit):
_limit = limit if limit > 0 else 5
td = TrainingData(LABEL_FILE, img_root=IMAGES_ROOT, mean_image_file=MEAN_IMAGE_FILE, image_property=IMAGE_PROP)
label_def = LabelingMachine.read_label_def(LABEL_DEF_FILE)
model = alex.Alex(len(label_def))
serializers.load_npz(MODEL_FILE, model)
i = 0
for arr, im in td.generate():
x = np.ndarray((1,) + arr.shape, arr.dtype)
x[0] = arr
x = chainer.Variable(np.asarray(x), volatile="on")
y = model.predict(x)
p = np.argmax(y.data)
print("predict {0}, actual {1}".format(label_def[p], label_def[im.label]))
im.image.show()
i += 1
if i >= _limit:
break
示例11: build_example
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import asarray [as 別名]
def build_example(line):
parts = line.split(' ')
label = int(parts[0])
if label > 1:
label = 1
indice_list = []
items = parts[1:]
for item in items:
index = int(item.split(':')[0])
if index >= input_dim:
continue
indice_list += [[0, index]]
value_list = [1 for i in range(len(indice_list))]
shape_list = [1, input_dim]
indice_list = numpy.asarray(indice_list)
value_list = numpy.asarray(value_list)
shape_list = numpy.asarray(shape_list)
return indice_list, value_list, shape_list, label
# 一定要放在 with 裏,不然 導出的 graph 不帶變量和參數
示例12: color_overlap
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import asarray [as 別名]
def color_overlap(color1, *args):
'''
color_overlap(color1, color2...) yields the rgba value associated with overlaying color2 on top
of color1 followed by any additional colors (overlaid left to right). This respects alpha
values when calculating the results.
Note that colors may be lists of colors, in which case a matrix of RGBA values is yielded.
'''
args = list(args)
args.insert(0, color1)
rgba = np.asarray([0.5,0.5,0.5,0])
for c in args:
c = to_rgba(c)
a = c[...,3]
a0 = rgba[...,3]
if np.isclose(a0, 0).all(): rgba = np.ones(rgba.shape) * c
elif np.isclose(a, 0).all(): continue
else: rgba = times(a, c) + times(1-a, rgba)
return rgba
示例13: apply_cmap
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import asarray [as 別名]
def apply_cmap(zs, cmap, vmin=None, vmax=None, unit=None, logrescale=False):
'''
apply_cmap(z, cmap) applies the given cmap to the values in z; if vmin and/or vmax are passed,
they are used to scale z.
Note that this function can automatically rescale data into log-space if the colormap is a
neuropythy log-space colormap such as log_eccentricity. To enable this behaviour use the
optional argument logrescale=True.
'''
zs = pimms.mag(zs) if unit is None else pimms.mag(zs, unit)
zs = np.asarray(zs, dtype='float')
if pimms.is_str(cmap): cmap = matplotlib.cm.get_cmap(cmap)
if logrescale:
if vmin is None: vmin = np.log(np.nanmin(zs))
if vmax is None: vmax = np.log(np.nanmax(zs))
mn = np.exp(vmin)
u = zdivide(nanlog(zs + mn) - vmin, vmax - vmin, null=np.nan)
else:
if vmin is None: vmin = np.nanmin(zs)
if vmax is None: vmax = np.nanmax(zs)
u = zdivide(zs - vmin, vmax - vmin, null=np.nan)
u[np.isnan(u)] = -np.inf
return cmap(u)
示例14: images_from_filemap
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import asarray [as 別名]
def images_from_filemap(fmap):
'''
images_from_filemap(fmap) yields a persistent map of MRImages tracked by the given subject with
the given name and path; in freesurfer subjects these are renamed and converted from their
typical freesurfer filenames (such as 'ribbon') to forms that conform to the neuropythy naming
conventions (such as 'gray_mask'). To access data by their original names, use the filemap.
'''
imgmap = fmap.data_tree.image
def img_loader(k): return lambda:imgmap[k]
imgs = {k:img_loader(k) for k in six.iterkeys(imgmap)}
def _make_mask(val, eq=True):
rib = imgmap['ribbon']
img = np.asarray(rib.dataobj)
arr = (img == val) if eq else (img != val)
arr.setflags(write=False)
return type(rib)(arr, rib.affine, rib.header)
imgs['lh_gray_mask'] = lambda:_make_mask(3)
imgs['lh_white_mask'] = lambda:_make_mask(2)
imgs['rh_gray_mask'] = lambda:_make_mask(42)
imgs['rh_white_mask'] = lambda:_make_mask(41)
imgs['brain_mask'] = lambda:_make_mask(0, False)
# merge in with the typical images
return pimms.merge(fmap.data_tree.image, pimms.lazy_map(imgs))
示例15: image_dimensions
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import asarray [as 別名]
def image_dimensions(images):
'''
sub.image_dimensions is a tuple of the default size of an anatomical image for the given
subject.
'''
if images is None or len(images) == 0: return None
if pimms.is_lazy_map(images):
# look for an image that isn't lazy...
key = next((k for k in images.iterkeys() if not images.is_lazy(k)), None)
if key is None: key = next(images.iterkeys(), None)
else:
key = next(images.iterkeys(), None)
img = images[key]
if img is None: return None
if is_image(img): img = img.dataobj
return np.asarray(img).shape