當前位置: 首頁>>代碼示例>>Python>>正文


Python numpy.asarray方法代碼示例

本文整理匯總了Python中numpy.asarray方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.asarray方法的具體用法?Python numpy.asarray怎麽用?Python numpy.asarray使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在numpy的用法示例。


在下文中一共展示了numpy.asarray方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: transform

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import asarray [as 別名]
def transform(self, sample):
        if not self.model:
            if not self.architecture.startswith("@"):
                _, self.preprocess_input, self.model = \
                    get_imagenet_architecture(self.architecture, self.variant, self.size, self.alpha, self.output_layer)
            else:
                self.model = get_custom_architecture(self.architecture, self.trainings_dir, self.output_layer)
                self.preprocess_input = generic_preprocess_input

        x = sample.x
        x = x.convert('RGB')
        x = resize_image(x, self.image_size, self.image_size, 'antialias', 'aspect-fill')
        #x = x.resize((self.image_size, self.image_size))
        x = np.asarray(x)
        x = np.expand_dims(x, axis=0)
        x = self.preprocess_input(x)
        features = self.model.predict(x)
        features = features.flatten()
        sample.x = features
        sample.y = None
        return sample 
開發者ID:mme,項目名稱:vergeml,代碼行數:23,代碼來源:features.py

示例2: variable

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import asarray [as 別名]
def variable(value, dtype=None, name=None):
    '''Instantiates a variable and returns it.

    # Arguments
        value: Numpy array, initial value of the tensor.
        dtype: Tensor type.
        name: Optional name string for the tensor.

    # Returns
        A variable instance (with Keras metadata included).
    '''
    if dtype is None:
        dtype = floatx()
    if hasattr(value, 'tocoo'):
        _assert_sparse_module()
        variable = th_sparse_module.as_sparse_variable(value)
    else:
        value = np.asarray(value, dtype=dtype)
        variable = theano.shared(value=value, name=name, strict=False)
    variable._keras_shape = value.shape
    variable._uses_learning_phase = False
    return variable 
開發者ID:lingluodlut,項目名稱:Att-ChemdNER,代碼行數:24,代碼來源:theano_backend.py

示例3: cast_to_floatx

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import asarray [as 別名]
def cast_to_floatx(x):
    '''Cast a Numpy array to the default Keras float type.

    # Arguments
        x: Numpy array.

    # Returns
        The same Numpy array, cast to its new type.

    # Example
    ```python
        >>> from keras import backend as K
        >>> K.floatx()
        'float32'
        >>> arr = numpy.array([1.0, 2.0], dtype='float64')
        >>> arr.dtype
        dtype('float64')
        >>> new_arr = K.cast_to_floatx(arr)
        >>> new_arr
        array([ 1.,  2.], dtype=float32)
        >>> new_arr.dtype
        dtype('float32')
    ```
    '''
    return np.asarray(x, dtype=_FLOATX) 
開發者ID:lingluodlut,項目名稱:Att-ChemdNER,代碼行數:27,代碼來源:common.py

示例4: loadW2V

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import asarray [as 別名]
def loadW2V(self,emb_path, type="bin"):
        print("Loading W2V data...")
        num_keys = 0
        if type=="textgz":
            # this seems faster than gensim non-binary load
            for line in gzip.open(emb_path):
                l = line.strip().split()
                st=l[0].lower()
                self.pre_emb[st]=np.asarray(l[1:])
            num_keys=len(self.pre_emb)
        if type=="text":
            # this seems faster than gensim non-binary load
            for line in open(emb_path):
                l = line.strip().split()
                st=l[0].lower()
                self.pre_emb[st]=np.asarray(l[1:])
            num_keys=len(self.pre_emb)
        else:
            self.pre_emb = Word2Vec.load_word2vec_format(emb_path,binary=True)
            self.pre_emb.init_sims(replace=True)
            num_keys=len(self.pre_emb.vocab)
        print("loaded word2vec len ", num_keys)
        gc.collect() 
開發者ID:dhwajraj,項目名稱:deep-siamese-text-similarity,代碼行數:25,代碼來源:input_helpers.py

示例5: getTsvData

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import asarray [as 別名]
def getTsvData(self, filepath):
        print("Loading training data from "+filepath)
        x1=[]
        x2=[]
        y=[]
        # positive samples from file
        for line in open(filepath):
            l=line.strip().split("\t")
            if len(l)<2:
                continue
            if random() > 0.5:
                x1.append(l[0].lower())
                x2.append(l[1].lower())
            else:
                x1.append(l[1].lower())
                x2.append(l[0].lower())
            y.append(int(l[2]))
        return np.asarray(x1),np.asarray(x2),np.asarray(y) 
開發者ID:dhwajraj,項目名稱:deep-siamese-text-similarity,代碼行數:20,代碼來源:input_helpers.py

示例6: batch_iter

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import asarray [as 別名]
def batch_iter(self, data, batch_size, num_epochs, shuffle=True):
        """
        Generates a batch iterator for a dataset.
        """
        data = np.asarray(data)
        print(data)
        print(data.shape)
        data_size = len(data)
        num_batches_per_epoch = int(len(data)/batch_size) + 1
        for epoch in range(num_epochs):
            # Shuffle the data at each epoch
            if shuffle:
                shuffle_indices = np.random.permutation(np.arange(data_size))
                shuffled_data = data[shuffle_indices]
            else:
                shuffled_data = data
            for batch_num in range(num_batches_per_epoch):
                start_index = batch_num * batch_size
                end_index = min((batch_num + 1) * batch_size, data_size)
                yield shuffled_data[start_index:end_index] 
開發者ID:dhwajraj,項目名稱:deep-siamese-text-similarity,代碼行數:22,代碼來源:input_helpers.py

示例7: create_celeba

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import asarray [as 別名]
def create_celeba(tfrecord_dir, celeba_dir, cx=89, cy=121):
    print('Loading CelebA from "%s"' % celeba_dir)
    glob_pattern = os.path.join(celeba_dir, 'img_align_celeba_png', '*.png')
    image_filenames = sorted(glob.glob(glob_pattern))
    expected_images = 202599
    if len(image_filenames) != expected_images:
        error('Expected to find %d images' % expected_images)
    
    with TFRecordExporter(tfrecord_dir, len(image_filenames)) as tfr:
        order = tfr.choose_shuffled_order()
        for idx in range(order.size):
            img = np.asarray(PIL.Image.open(image_filenames[order[idx]]))
            assert img.shape == (218, 178, 3)
            img = img[cy - 64 : cy + 64, cx - 64 : cx + 64]
            img = img.transpose(2, 0, 1) # HWC => CHW
            tfr.add_image(img)

#---------------------------------------------------------------------------- 
開發者ID:zalandoresearch,項目名稱:disentangling_conditional_gans,代碼行數:20,代碼來源:dataset_tool.py

示例8: __init__

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import asarray [as 別名]
def __init__(self, dataset, oversample_thr):
        self.dataset = dataset
        self.oversample_thr = oversample_thr
        self.CLASSES = dataset.CLASSES

        repeat_factors = self._get_repeat_factors(dataset, oversample_thr)
        repeat_indices = []
        for dataset_index, repeat_factor in enumerate(repeat_factors):
            repeat_indices.extend([dataset_index] * math.ceil(repeat_factor))
        self.repeat_indices = repeat_indices

        flags = []
        if hasattr(self.dataset, 'flag'):
            for flag, repeat_factor in zip(self.dataset.flag, repeat_factors):
                flags.extend([flag] * int(math.ceil(repeat_factor)))
            assert len(flags) == len(repeat_indices)
        self.flag = np.asarray(flags, dtype=np.uint8) 
開發者ID:open-mmlab,項目名稱:mmdetection,代碼行數:19,代碼來源:dataset_wrappers.py

示例9: areas

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import asarray [as 別名]
def areas(self):
        """Compute areas of masks.

        This func is modified from
        https://github.com/facebookresearch/detectron2/blob/ffff8acc35ea88ad1cb1806ab0f00b4c1c5dbfd9/detectron2/structures/masks.py#L387
        Only works with Polygons, using the shoelace formula

        Return:
            ndarray: areas of each instance
        """  # noqa: W501
        area = []
        for polygons_per_obj in self.masks:
            area_per_obj = 0
            for p in polygons_per_obj:
                area_per_obj += self._polygon_area(p[0::2], p[1::2])
            area.append(area_per_obj)
        return np.asarray(area) 
開發者ID:open-mmlab,項目名稱:mmdetection,代碼行數:19,代碼來源:structures.py

示例10: predict

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import asarray [as 別名]
def predict(limit):
    _limit = limit if limit > 0 else 5

    td = TrainingData(LABEL_FILE, img_root=IMAGES_ROOT, mean_image_file=MEAN_IMAGE_FILE, image_property=IMAGE_PROP)
    label_def = LabelingMachine.read_label_def(LABEL_DEF_FILE)
    model = alex.Alex(len(label_def))
    serializers.load_npz(MODEL_FILE, model)

    i = 0
    for arr, im in td.generate():
        x = np.ndarray((1,) + arr.shape, arr.dtype)
        x[0] = arr
        x = chainer.Variable(np.asarray(x), volatile="on")
        y = model.predict(x)
        p = np.argmax(y.data)
        print("predict {0}, actual {1}".format(label_def[p], label_def[im.label]))
        im.image.show()
        i += 1
        if i >= _limit:
            break 
開發者ID:icoxfog417,項目名稱:mlimages,代碼行數:22,代碼來源:chainer_alex.py

示例11: build_example

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import asarray [as 別名]
def build_example(line):
    parts = line.split(' ')
    label = int(parts[0])
    if label > 1:
        label = 1

    indice_list = []
    items = parts[1:]
    for item in items:
        index = int(item.split(':')[0])
        if index >= input_dim:
            continue
        indice_list += [[0, index]]

    value_list = [1 for i in range(len(indice_list))]
    shape_list = [1, input_dim]

    indice_list = numpy.asarray(indice_list)
    value_list = numpy.asarray(value_list)
    shape_list = numpy.asarray(shape_list)
    return indice_list, value_list, shape_list, label


# 一定要放在 with 裏,不然 導出的 graph 不帶變量和參數 
開發者ID:wdxtub,項目名稱:deep-learning-note,代碼行數:26,代碼來源:parse_result.py

示例12: color_overlap

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import asarray [as 別名]
def color_overlap(color1, *args):
    '''
    color_overlap(color1, color2...) yields the rgba value associated with overlaying color2 on top
      of color1 followed by any additional colors (overlaid left to right). This respects alpha
      values when calculating the results.
    Note that colors may be lists of colors, in which case a matrix of RGBA values is yielded.
    '''
    args = list(args)
    args.insert(0, color1)
    rgba = np.asarray([0.5,0.5,0.5,0])
    for c in args:
        c = to_rgba(c)
        a = c[...,3]
        a0 = rgba[...,3]
        if   np.isclose(a0, 0).all(): rgba = np.ones(rgba.shape) * c
        elif np.isclose(a,  0).all(): continue
        else:                         rgba = times(a, c) + times(1-a, rgba)
    return rgba 
開發者ID:noahbenson,項目名稱:neuropythy,代碼行數:20,代碼來源:core.py

示例13: apply_cmap

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import asarray [as 別名]
def apply_cmap(zs, cmap, vmin=None, vmax=None, unit=None, logrescale=False):
    '''
    apply_cmap(z, cmap) applies the given cmap to the values in z; if vmin and/or vmax are passed,
      they are used to scale z.

    Note that this function can automatically rescale data into log-space if the colormap is a
    neuropythy log-space colormap such as log_eccentricity. To enable this behaviour use the
    optional argument logrescale=True.
    '''
    zs = pimms.mag(zs) if unit is None else pimms.mag(zs, unit)
    zs = np.asarray(zs, dtype='float')
    if pimms.is_str(cmap): cmap = matplotlib.cm.get_cmap(cmap)
    if logrescale:
        if vmin is None: vmin = np.log(np.nanmin(zs))
        if vmax is None: vmax = np.log(np.nanmax(zs))
        mn = np.exp(vmin)
        u = zdivide(nanlog(zs + mn) - vmin, vmax - vmin, null=np.nan)
    else:        
        if vmin is None: vmin = np.nanmin(zs)
        if vmax is None: vmax = np.nanmax(zs)
        u = zdivide(zs - vmin, vmax - vmin, null=np.nan)
    u[np.isnan(u)] = -np.inf
    return cmap(u) 
開發者ID:noahbenson,項目名稱:neuropythy,代碼行數:25,代碼來源:core.py

示例14: images_from_filemap

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import asarray [as 別名]
def images_from_filemap(fmap):
    '''
    images_from_filemap(fmap) yields a persistent map of MRImages tracked by the given subject with
      the given name and path; in freesurfer subjects these are renamed and converted from their
      typical freesurfer filenames (such as 'ribbon') to forms that conform to the neuropythy naming
      conventions (such as 'gray_mask'). To access data by their original names, use the filemap.
    '''
    imgmap = fmap.data_tree.image
    def img_loader(k): return lambda:imgmap[k]
    imgs = {k:img_loader(k) for k in six.iterkeys(imgmap)}
    def _make_mask(val, eq=True):
        rib = imgmap['ribbon']
        img = np.asarray(rib.dataobj)
        arr = (img == val) if eq else (img != val)
        arr.setflags(write=False)
        return type(rib)(arr, rib.affine, rib.header)
    imgs['lh_gray_mask']  = lambda:_make_mask(3)
    imgs['lh_white_mask'] = lambda:_make_mask(2)
    imgs['rh_gray_mask']  = lambda:_make_mask(42)
    imgs['rh_white_mask'] = lambda:_make_mask(41)
    imgs['brain_mask']    = lambda:_make_mask(0, False)
    # merge in with the typical images
    return pimms.merge(fmap.data_tree.image, pimms.lazy_map(imgs)) 
開發者ID:noahbenson,項目名稱:neuropythy,代碼行數:25,代碼來源:core.py

示例15: image_dimensions

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import asarray [as 別名]
def image_dimensions(images):
        '''
        sub.image_dimensions is a tuple of the default size of an anatomical image for the given
        subject.
        '''
        if images is None or len(images) == 0: return None
        if pimms.is_lazy_map(images):
            # look for an image that isn't lazy...
            key = next((k for k in images.iterkeys() if not images.is_lazy(k)), None)
            if key is None: key = next(images.iterkeys(), None)
        else:
            key = next(images.iterkeys(), None)
        img = images[key]
        if img is None: return None
        if is_image(img): img = img.dataobj
        return np.asarray(img).shape 
開發者ID:noahbenson,項目名稱:neuropythy,代碼行數:18,代碼來源:core.py


注:本文中的numpy.asarray方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。