本文整理匯總了Python中numpy.array_str方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.array_str方法的具體用法?Python numpy.array_str怎麽用?Python numpy.array_str使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類numpy
的用法示例。
在下文中一共展示了numpy.array_str方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _array_str_implementation
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import array_str [as 別名]
def _array_str_implementation(
a, max_line_width=None, precision=None, suppress_small=None,
array2string=array2string):
"""Internal version of array_str() that allows overriding array2string."""
if (_format_options['legacy'] == '1.13' and
a.shape == () and not a.dtype.names):
return str(a.item())
# the str of 0d arrays is a special case: It should appear like a scalar,
# so floats are not truncated by `precision`, and strings are not wrapped
# in quotes. So we return the str of the scalar value.
if a.shape == ():
# obtain a scalar and call str on it, avoiding problems for subclasses
# for which indexing with () returns a 0d instead of a scalar by using
# ndarray's getindex. Also guard against recursive 0d object arrays.
return _guarded_str(np.ndarray.__getitem__(a, ()))
return array2string(a, max_line_width, precision, suppress_small, ' ', "")
示例2: _
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import array_str [as 別名]
def _():
""" additional tests
here we generate a paraboloid (x^2+y^2) and a hyperbolic paraboloid
(x^2-y^2) to check that the curvature code gives the right answers for
the Gaussian (4, -4) and mean (2, 0) curvatures
>>> import pytim
>>> x,y=np.mgrid[-5:5,-5:5.]/2.
>>> p = np.asarray(list(zip(x.flatten(),y.flatten())))
>>> z1 = p[:,0]**2+p[:,1]**2
>>> z2 = p[:,0]**2-p[:,1]**2
>>>
>>> for z in [z1, z2]:
... pp = np.asarray(list(zip(x.flatten()+5,y.flatten()+5,z)))
... curv = pytim.observables.Curvature(cutoff=1.,warning=False).compute(pp)
... val = (curv[np.logical_and(p[:,0]==0,p[:,1]==0)])
... # add and subtract 1e3 to be sure to have -0 -> 0
... print(np.array_str((val+1e3)-1e3, precision=2, suppress_small=True))
[[4. 2.]]
[[-4. 0.]]
"""
#
示例3: __init__
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import array_str [as 別名]
def __init__(self, hist, reduce_to_domain_shape=None, dist=None):
"""
Any instances with equal key() values should have equal hash() values
domain_shape will be result of regular grid partition
"""
if isinstance(reduce_to_domain_shape, int): # allow for integers in 1D, instead of shape tuples
reduce_to_domain_shape = (reduce_to_domain_shape, )
if dist is not None:
self._dist_str = numpy.array_str(numpy.array(dist))
else:
self._dist_str = ''
self._hist = hist
self._reduce_to_domain_shape = reduce_to_domain_shape if hist.shape != reduce_to_domain_shape else None
self._dist = dist
self._payload = None
self._compiled = False
示例4: set_external_qaid_mask
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import array_str [as 別名]
def set_external_qaid_mask(qreq_, masked_qaid_list):
r"""
Args:
qaid_list (list):
CommandLine:
python -m ibeis.algo.hots.query_request --test-set_external_qaid_mask
Example:
>>> # ENABLE_DOCTEST
>>> from ibeis.algo.hots.query_request import * # NOQA
>>> import ibeis
>>> ibs = ibeis.opendb(db='testdb1')
>>> qaid_list = [1, 2, 3, 4, 5]
>>> daid_list = [1, 2, 3, 4, 5]
>>> qreq_ = ibs.new_query_request(qaid_list, daid_list)
>>> masked_qaid_list = [2, 4, 5]
>>> qreq_.set_external_qaid_mask(masked_qaid_list)
>>> result = np.array_str(qreq_.qaids)
>>> print(result)
[1 3]
"""
qreq_.set_internal_masked_qaids(masked_qaid_list)
# --- Internal Annotation ID Masks ----
示例5: predictAisMeasurements
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import array_str [as 別名]
def predictAisMeasurements(self, scanTime, aisMeasurements):
import pymht.models.pv as model
import pymht.utils.kalman as kalman
assert len(aisMeasurements) > 0
aisPredictions = AisMessageList(scanTime)
scanTimeString = datetime.datetime.fromtimestamp(scanTime).strftime("%H:%M:%S.%f")
for measurement in aisMeasurements:
aisTimeString = datetime.datetime.fromtimestamp(measurement.time).strftime("%H:%M:%S.%f")
log.debug("Predicting AIS (" + str(measurement.mmsi) + ") from " + aisTimeString + " to " + scanTimeString)
dT = scanTime - measurement.time
assert dT >= 0
state = measurement.state
A = model.Phi(dT)
Q = model.Q(dT)
x_bar, P_bar = kalman.predict(A, Q, np.array(state, ndmin=2),
np.array(measurement.covariance, ndmin=3))
aisPredictions.measurements.append(
AIS_prediction(model.C_RADAR.dot(x_bar[0]),
model.C_RADAR.dot(P_bar[0]).dot(model.C_RADAR.T), measurement.mmsi))
log.debug(np.array_str(state) + "=>" + np.array_str(x_bar[0]))
aisPredictions.aisMessages.append(measurement)
assert len(aisPredictions.measurements) == len(aisMeasurements)
return aisPredictions
示例6: variable_str
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import array_str [as 別名]
def variable_str(var):
"""Return the string representation of a variable.
Args:
var (~chainer.Variable): Input Variable.
.. seealso:: numpy.array_str
"""
arr = _cpu._to_cpu(var.array)
if var.name:
prefix = 'variable ' + var.name
else:
prefix = 'variable'
if arr is None:
lst = 'None'
else:
lst = numpy.array2string(arr, None, None, None, ' ', prefix + '(')
return '%s(%s)' % (prefix, lst)
示例7: array_str
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import array_str [as 別名]
def array_str(arr, max_line_width=None, precision=None, suppress_small=None):
"""Returns the string representation of the content of an array.
Args:
arr (array_like): Input array. It should be able to feed to
:func:`cupy.asnumpy`.
max_line_width (int): The maximum number of line lengths.
precision (int): Floating point precision. It uses the current printing
precision of NumPy.
suppress_small (bool): If ``True``, very small number are printed as
zeros.
.. seealso:: :func:`numpy.array_str`
"""
return numpy.array_str(cupy.asnumpy(arr), max_line_width, precision,
suppress_small)
示例8: execute
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import array_str [as 別名]
def execute(self, data, batch_size):
BATCH = namedtuple('BATCH', ['data', 'label'])
self.model.bind(data_shapes=[('data', (batch_size, 1, 28, 28))],
label_shapes=[('softmax_label', (batch_size, 10))],
for_training=False)
self.model.set_params(self.arg_params, self.aux_params)
ret = []
for i in range(batch_size):
im = Image.open(data[i]).resize((28, 28))
im = np.array(im) / 255.0
im = im.reshape(-1, 1, 28, 28)
self.model.forward(BATCH([mx.nd.array(im)], None))
predict_values = self.model.get_outputs()[0].asnumpy()
val = predict_values[0]
ret_val = np.array_str(np.argmax(val)) + '\n'
ret.append(ret_val)
return ret
示例9: execute
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import array_str [as 別名]
def execute(self, data, batch_size):
sess = self.output['sess']
x = self.output['x']
y_ = self.output['y_']
imgs = []
for i in range(batch_size):
im = Image.open(data[i]).resize((28, 28)).convert('L')
im = np.array(im)
im = im.reshape(784)
im = im.astype(np.float32)
im = np.multiply(im, 1.0 / 255.0)
imgs.append(im)
imgs = np.array(imgs)
predict_values = sess.run(y_, feed_dict={x: imgs})
print(predict_values)
ret = []
for val in predict_values:
ret_val = np.array_str(np.argmax(val)) + '\n'
ret.append(ret_val)
return ret
示例10: log_dictionary
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import array_str [as 別名]
def log_dictionary(mode_order, validation_costs, min_validation_costs, logger, first_n=5):
for mode in mode_order:
if mode in validation_costs:
costs = validation_costs[mode]
if hasattr(costs, '__iter__'):
assert 'estimated' in mode
msg = np.array_str(costs[:first_n], max_line_width=50, precision=2)
logger.info('\t%.5s_validation_cost:\t%s' %
(mode, msg))
logger.info('\t\tavg=%.2f, increase_ratio=%.2f' % (
np.mean(costs),
np.mean(costs > min_validation_costs[mode])
))
logger.info('\t\tmode=%.2f, std=%.2f, min=%.2f, max=%.2f' %
(np.median(costs),
np.std(costs),
np.min(costs),
np.max(costs)))
else:
logger.info('\t%.5s_validation_cost:\t%.3f' %
(mode, costs))
示例11: __str__
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import array_str [as 別名]
def __str__(self):
return (("%s:\n"
" * Coefficients: %s\n"
" * Intercept = %.5f\n") %
(self.__class__.__name__,
np.array_str(self.coef_, precision=4),
self.intercept_))
示例12: array_str
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import array_str [as 別名]
def array_str(a, max_line_width=None, precision=None, suppress_small=None):
"""
Return a string representation of the data in an array.
The data in the array is returned as a single string. This function is
similar to `array_repr`, the difference being that `array_repr` also
returns information on the kind of array and its data type.
Parameters
----------
a : ndarray
Input array.
max_line_width : int, optional
Inserts newlines if text is longer than `max_line_width`. The
default is, indirectly, 75.
precision : int, optional
Floating point precision. Default is the current printing precision
(usually 8), which can be altered using `set_printoptions`.
suppress_small : bool, optional
Represent numbers "very close" to zero as zero; default is False.
Very close is defined by precision: if the precision is 8, e.g.,
numbers smaller (in absolute value) than 5e-9 are represented as
zero.
See Also
--------
array2string, array_repr, set_printoptions
Examples
--------
>>> np.array_str(np.arange(3))
'[0 1 2]'
"""
return _array_str_implementation(
a, max_line_width, precision, suppress_small)
# needed if __array_function__ is disabled
示例13: test_array_str_64bit
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import array_str [as 別名]
def test_array_str_64bit(self):
# Ticket #501
s = np.array([1, np.nan], dtype=np.float64)
with np.errstate(all='raise'):
np.array_str(s) # Should succeed
示例14: make_wordvectors
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import array_str [as 別名]
def make_wordvectors():
global lcode
import gensim # In case you have difficulties installing gensim, you need to consider installing conda.
import cPickle as pickle
print "Making sentences as list..."
sents = []
with codecs.open('data/{}.txt'.format(lcode), 'r', 'utf-8') as fin:
while 1:
line = fin.readline()
if not line: break
words = line.split()
sents.append(words)
print "Making word vectors..."
min_count = get_min_count(sents)
model = gensim.models.Word2Vec(sents, size=vector_size, min_count=min_count,
negative=num_negative,
window=window_size)
model.save('data/{}.bin'.format(lcode))
# Save to file
with codecs.open('data/{}.tsv'.format(lcode), 'w', 'utf-8') as fout:
for i, word in enumerate(model.index2word):
fout.write(u"{}\t{}\t{}\n".format(str(i), word.encode('utf8').decode('utf8'),
np.array_str(model[word])
))
示例15: test_array_str_64bit
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import array_str [as 別名]
def test_array_str_64bit(self, level=rlevel):
# Ticket #501
s = np.array([1, np.nan], dtype=np.float64)
with np.errstate(all='raise'):
np.array_str(s) # Should succeed