當前位置: 首頁>>代碼示例>>Python>>正文


Python numpy.array_equal方法代碼示例

本文整理匯總了Python中numpy.array_equal方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.array_equal方法的具體用法?Python numpy.array_equal怎麽用?Python numpy.array_equal使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在numpy的用法示例。


在下文中一共展示了numpy.array_equal方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_train

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import array_equal [as 別名]
def test_train(self):
        model = SimpleModel().train()
        train_config = TrainConfig(model, [], torch.nn.Module(), torch.optim.SGD(model.parameters(), lr=0.1))
        dp = TrainDataProcessor(train_config=train_config)

        self.assertFalse(model.fc.weight.is_cuda)
        self.assertTrue(model.training)
        res = dp.predict({'data': torch.rand(1, 3)}, is_train=True)
        self.assertTrue(model.training)
        self.assertTrue(res.requires_grad)
        self.assertIsNone(res.grad)

        with self.assertRaises(NotImplementedError):
            dp.process_batch({'data': torch.rand(1, 3), 'target': torch.rand(1)}, is_train=True)

        loss = SimpleLoss()
        train_config = TrainConfig(model, [], loss, torch.optim.SGD(model.parameters(), lr=0.1))
        dp = TrainDataProcessor(train_config=train_config)
        res = dp.process_batch({'data': torch.rand(1, 3), 'target': torch.rand(1)}, is_train=True)
        self.assertTrue(model.training)
        self.assertTrue(loss.module.requires_grad)
        self.assertIsNotNone(loss.module.grad)
        self.assertTrue(np.array_equal(res, loss.res.data.numpy())) 
開發者ID:toodef,項目名稱:neural-pipeline,代碼行數:25,代碼來源:data_processor_test.py

示例2: test_residual

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import array_equal [as 別名]
def test_residual():
    cell = gluon.rnn.ResidualCell(gluon.rnn.GRUCell(50, prefix='rnn_'))
    inputs = [mx.sym.Variable('rnn_t%d_data'%i) for i in range(2)]
    outputs, _ = cell.unroll(2, inputs)
    outputs = mx.sym.Group(outputs)
    assert sorted(cell.collect_params().keys()) == \
           ['rnn_h2h_bias', 'rnn_h2h_weight', 'rnn_i2h_bias', 'rnn_i2h_weight']
    # assert outputs.list_outputs() == \
    #        ['rnn_t0_out_plus_residual_output', 'rnn_t1_out_plus_residual_output']

    args, outs, auxs = outputs.infer_shape(rnn_t0_data=(10, 50), rnn_t1_data=(10, 50))
    assert outs == [(10, 50), (10, 50)]
    outputs = outputs.eval(rnn_t0_data=mx.nd.ones((10, 50)),
                           rnn_t1_data=mx.nd.ones((10, 50)),
                           rnn_i2h_weight=mx.nd.zeros((150, 50)),
                           rnn_i2h_bias=mx.nd.zeros((150,)),
                           rnn_h2h_weight=mx.nd.zeros((150, 50)),
                           rnn_h2h_bias=mx.nd.zeros((150,)))
    expected_outputs = np.ones((10, 50))
    assert np.array_equal(outputs[0].asnumpy(), expected_outputs)
    assert np.array_equal(outputs[1].asnumpy(), expected_outputs) 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:23,代碼來源:test_gluon_rnn.py

示例3: test_residual_fused

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import array_equal [as 別名]
def test_residual_fused():
    cell = mx.rnn.ResidualCell(
            mx.rnn.FusedRNNCell(50, num_layers=3, mode='lstm',
                               prefix='rnn_', dropout=0.5))

    inputs = [mx.sym.Variable('rnn_t%d_data'%i) for i in range(2)]
    outputs, _ = cell.unroll(2, inputs, merge_outputs=None)
    assert sorted(cell.params._params.keys()) == \
           ['rnn_parameters']

    args, outs, auxs = outputs.infer_shape(rnn_t0_data=(10, 50), rnn_t1_data=(10, 50))
    assert outs == [(10, 2, 50)]
    outputs = outputs.eval(ctx=mx.gpu(0),
                           rnn_t0_data=mx.nd.ones((10, 50), ctx=mx.gpu(0))+5,
                           rnn_t1_data=mx.nd.ones((10, 50), ctx=mx.gpu(0))+5,
                           rnn_parameters=mx.nd.zeros((61200,), ctx=mx.gpu(0)))
    expected_outputs = np.ones((10, 2, 50))+5
    assert np.array_equal(outputs[0].asnumpy(), expected_outputs) 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:20,代碼來源:test_operator_gpu.py

示例4: test_compute_corloc_with_normal_iou_threshold

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import array_equal [as 別名]
def test_compute_corloc_with_normal_iou_threshold(self):
    num_groundtruth_classes = 3
    matching_iou_threshold = 0.5
    nms_iou_threshold = 1.0
    nms_max_output_boxes = 10000
    eval1 = per_image_evaluation.PerImageEvaluation(num_groundtruth_classes,
                                                    matching_iou_threshold,
                                                    nms_iou_threshold,
                                                    nms_max_output_boxes)
    detected_boxes = np.array([[0, 0, 1, 1], [0, 0, 2, 2], [0, 0, 3, 3],
                               [0, 0, 5, 5]], dtype=float)
    detected_scores = np.array([0.9, 0.9, 0.1, 0.9], dtype=float)
    detected_class_labels = np.array([0, 1, 0, 2], dtype=int)
    groundtruth_boxes = np.array([[0, 0, 1, 1], [0, 0, 3, 3], [0, 0, 6, 6]],
                                 dtype=float)
    groundtruth_class_labels = np.array([0, 0, 2], dtype=int)

    is_class_correctly_detected_in_image = eval1._compute_cor_loc(
        detected_boxes, detected_scores, detected_class_labels,
        groundtruth_boxes, groundtruth_class_labels)
    expected_result = np.array([1, 0, 1], dtype=int)
    self.assertTrue(np.array_equal(expected_result,
                                   is_class_correctly_detected_in_image)) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:25,代碼來源:per_image_evaluation_test.py

示例5: test_compute_corloc_with_very_large_iou_threshold

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import array_equal [as 別名]
def test_compute_corloc_with_very_large_iou_threshold(self):
    num_groundtruth_classes = 3
    matching_iou_threshold = 0.9
    nms_iou_threshold = 1.0
    nms_max_output_boxes = 10000
    eval1 = per_image_evaluation.PerImageEvaluation(num_groundtruth_classes,
                                                    matching_iou_threshold,
                                                    nms_iou_threshold,
                                                    nms_max_output_boxes)
    detected_boxes = np.array([[0, 0, 1, 1], [0, 0, 2, 2], [0, 0, 3, 3],
                               [0, 0, 5, 5]], dtype=float)
    detected_scores = np.array([0.9, 0.9, 0.1, 0.9], dtype=float)
    detected_class_labels = np.array([0, 1, 0, 2], dtype=int)
    groundtruth_boxes = np.array([[0, 0, 1, 1], [0, 0, 3, 3], [0, 0, 6, 6]],
                                 dtype=float)
    groundtruth_class_labels = np.array([0, 0, 2], dtype=int)

    is_class_correctly_detected_in_image = eval1._compute_cor_loc(
        detected_boxes, detected_scores, detected_class_labels,
        groundtruth_boxes, groundtruth_class_labels)
    expected_result = np.array([1, 0, 0], dtype=int)
    self.assertTrue(np.array_equal(expected_result,
                                   is_class_correctly_detected_in_image)) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:25,代碼來源:per_image_evaluation_test.py

示例6: test_add_single_ground_truth_image_info

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import array_equal [as 別名]
def test_add_single_ground_truth_image_info(self):
    expected_num_gt_instances_per_class = np.array([3, 1, 2], dtype=int)
    expected_num_gt_imgs_per_class = np.array([2, 1, 2], dtype=int)
    self.assertTrue(np.array_equal(expected_num_gt_instances_per_class,
                                   self.od_eval.num_gt_instances_per_class))
    self.assertTrue(np.array_equal(expected_num_gt_imgs_per_class,
                                   self.od_eval.num_gt_imgs_per_class))
    groundtruth_boxes2 = np.array([[10, 10, 11, 11], [500, 500, 510, 510],
                                   [10, 10, 12, 12]], dtype=float)
    self.assertTrue(np.allclose(self.od_eval.groundtruth_boxes["img2"],
                                groundtruth_boxes2))
    groundtruth_is_difficult_list2 = np.array([False, True, False], dtype=bool)
    self.assertTrue(np.allclose(
        self.od_eval.groundtruth_is_difficult_list["img2"],
        groundtruth_is_difficult_list2))
    groundtruth_class_labels1 = np.array([0, 2, 0], dtype=int)
    self.assertTrue(np.array_equal(self.od_eval.groundtruth_class_labels[
        "img1"], groundtruth_class_labels1)) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:20,代碼來源:object_detection_evaluation_test.py

示例7: test_add_single_detected_image_info

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import array_equal [as 別名]
def test_add_single_detected_image_info(self):
    expected_scores_per_class = [[np.array([0.8, 0.7], dtype=float)], [],
                                 [np.array([0.9], dtype=float)]]
    expected_tp_fp_labels_per_class = [[np.array([0, 1], dtype=bool)], [],
                                       [np.array([0], dtype=bool)]]
    expected_num_images_correctly_detected_per_class = np.array([0, 0, 0],
                                                                dtype=int)
    for i in range(self.od_eval.num_class):
      for j in range(len(expected_scores_per_class[i])):
        self.assertTrue(np.allclose(expected_scores_per_class[i][j],
                                    self.od_eval.scores_per_class[i][j]))
        self.assertTrue(np.array_equal(expected_tp_fp_labels_per_class[i][
            j], self.od_eval.tp_fp_labels_per_class[i][j]))
    self.assertTrue(np.array_equal(
        expected_num_images_correctly_detected_per_class,
        self.od_eval.num_images_correctly_detected_per_class)) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:18,代碼來源:object_detection_evaluation_test.py

示例8: test_water_minima_fragment

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import array_equal [as 別名]
def test_water_minima_fragment():

    mol = water_dimer_minima.copy()
    frag_0 = mol.get_fragment(0, orient=True)
    frag_1 = mol.get_fragment(1, orient=True)
    assert frag_0.get_hash() == "5f31757232a9a594c46073082534ca8a6806d367"
    assert frag_1.get_hash() == "bdc1f75bd1b7b999ff24783d7c1673452b91beb9"

    frag_0_1 = mol.get_fragment(0, 1)
    frag_1_0 = mol.get_fragment(1, 0)

    assert np.array_equal(mol.symbols[:3], frag_0.symbols)
    assert np.allclose(mol.masses[:3], frag_0.masses)

    assert np.array_equal(mol.symbols, frag_0_1.symbols)
    assert np.allclose(mol.geometry, frag_0_1.geometry)

    assert np.array_equal(np.hstack((mol.symbols[3:], mol.symbols[:3])), frag_1_0.symbols)
    assert np.allclose(np.hstack((mol.masses[3:], mol.masses[:3])), frag_1_0.masses) 
開發者ID:MolSSI,項目名稱:QCElemental,代碼行數:21,代碼來源:test_molecule.py

示例9: test_pruneFeatureMap_ShouldPruneRightParams

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import array_equal [as 別名]
def test_pruneFeatureMap_ShouldPruneRightParams(self):
        dropped_index = 0
        output = self.module(self.input)
        torch.autograd.backward(output, self.upstream_gradient)

        old_weight_size = self.module.weight.size()
        old_bias_size = self.module.bias.size()
        old_out_channels = self.module.out_channels
        old_weight_values = self.module.weight.data.cpu().numpy()

        # ensure that the chosen index is dropped
        self.module.prune_feature_map(dropped_index)

        # check bias size
        self.assertEqual(self.module.bias.size()[0], (old_bias_size[0]-1))
        # check output channels
        self.assertEqual(self.module.out_channels, old_out_channels-1)

        _, *other_old_weight_sizes = old_weight_size
        # check weight size
        self.assertEqual(self.module.weight.size(), (old_weight_size[0]-1, *other_old_weight_sizes))
        # check weight value
        expected = np.delete(old_weight_values, dropped_index , 0)
        self.assertTrue(np.array_equal(self.module.weight.data.cpu().numpy(), expected)) 
開發者ID:alexfjw,項目名稱:prunnable-layers-pytorch,代碼行數:26,代碼來源:prunable_nn_test.py

示例10: test_PLinearDropInputs_ShouldDropRightParams

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import array_equal [as 別名]
def test_PLinearDropInputs_ShouldDropRightParams(self):
        dropped_index = 0

        # assume input is 2x2x2, 2 layers of 2x2
        input_shape = (2, 2, 2)
        module = pnn.PLinear(8, 10)

        old_num_features = module.in_features
        old_weight = module.weight.data.cpu().numpy()
        resized_old_weight = np.resize(old_weight, (module.out_features, *input_shape))

        module.drop_inputs(input_shape, dropped_index)
        new_shape = module.weight.size()

        # ensure that the chosen index is dropped
        expected_weight = np.resize(np.delete(resized_old_weight, dropped_index, 1), new_shape)
        output = module.weight.data.cpu().numpy()
        self.assertTrue(np.array_equal(output, expected_weight))

        # ensure num features is reduced
        self.assertTrue(module.in_features, old_num_features-1) 
開發者ID:alexfjw,項目名稱:prunnable-layers-pytorch,代碼行數:23,代碼來源:prunable_nn_test.py

示例11: test_PBatchNorm2dDropInputChannel_ShouldDropRightParams

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import array_equal [as 別名]
def test_PBatchNorm2dDropInputChannel_ShouldDropRightParams(self):
        dropped_index = 0
        module = pnn.PBatchNorm2d(2)

        old_num_features = module.num_features
        old_bias = module.bias.data.cpu().numpy()
        old_weight = module.weight.data.cpu().numpy()

        module.drop_input_channel(dropped_index)

        # ensure that the chosen index is dropped
        expected_weight = np.delete(old_weight, dropped_index, 0)
        self.assertTrue(np.array_equal(module.weight.data.cpu().numpy(), expected_weight))
        expected_bias = np.delete(old_bias, dropped_index, 0)
        self.assertTrue(np.array_equal(module.bias.data.cpu().numpy(), expected_bias))
        # ensure num features is reduced
        self.assertTrue(module.num_features, old_num_features-1) 
開發者ID:alexfjw,項目名稱:prunnable-layers-pytorch,代碼行數:19,代碼來源:prunable_nn_test.py

示例12: _ewald_exxdiv_for_G0

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import array_equal [as 別名]
def _ewald_exxdiv_for_G0(cell, kpts, dms, vk, kpts_band=None):
    s = cell.pbc_intor('int1e_ovlp', hermi=1, kpts=kpts)
    madelung = tools.pbc.madelung(cell, kpts)
    if kpts is None:
        for i,dm in enumerate(dms):
            vk[i] += madelung * reduce(numpy.dot, (s, dm, s))
    elif numpy.shape(kpts) == (3,):
        if kpts_band is None or is_zero(kpts_band-kpts):
            for i,dm in enumerate(dms):
                vk[i] += madelung * reduce(numpy.dot, (s, dm, s))

    elif kpts_band is None or numpy.array_equal(kpts, kpts_band):
        for k in range(len(kpts)):
            for i,dm in enumerate(dms):
                vk[i,k] += madelung * reduce(numpy.dot, (s[k], dm[k], s[k]))
    else:
        for k, kpt in enumerate(kpts):
            for kp in member(kpt, kpts_band.reshape(-1,3)):
                for i,dm in enumerate(dms):
                    vk[i,kp] += madelung * reduce(numpy.dot, (s[k], dm[k], s[k])) 
開發者ID:pyscf,項目名稱:pyscf,代碼行數:22,代碼來源:df_jk.py

示例13: test_D2htoDinfh

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import array_equal [as 別名]
def test_D2htoDinfh(self):
        SHCI = lambda: None
        SHCI.groupname = 'Dooh'
        #SHCI.orbsym = numpy.array([15,14,0,6,7,2,3,10,11,15,14,17,16,5,13,12,16,17,12,13])
        SHCI.orbsym = numpy.array([
            15, 14, 0, 7, 6, 2, 3, 10, 11, 15, 14, 17, 16, 5, 12, 13, 17, 16,
            12, 13
        ])

        coeffs, nRows, rowIndex, rowCoeffs, orbsym = D2htoDinfh(SHCI, 20, 20)
        coeffs1, nRows1, rowIndex1, rowCoeffs1, orbsym1 = shci.D2htoDinfh(
            SHCI, 20, 20)
        self.assertTrue(numpy.array_equal(coeffs1, coeffs))
        self.assertTrue(numpy.array_equal(nRows1, nRows))
        self.assertTrue(numpy.array_equal(rowIndex1, rowIndex))
        self.assertTrue(numpy.array_equal(rowCoeffs1, rowCoeffs))
        self.assertTrue(numpy.array_equal(orbsym1, orbsym)) 
開發者ID:pyscf,項目名稱:pyscf,代碼行數:19,代碼來源:test_shci.py

示例14: test_takebak_2d

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import array_equal [as 別名]
def test_takebak_2d(self):
        b = numpy.arange(9.).reshape((3,3))
        a = numpy.arange(49.).reshape(7,7)
        idx = numpy.array([3,0,5])
        idy = numpy.array([5,4,1])
        ref = a.copy()
        ref[idx[:,None],idy] += b
        lib.takebak_2d(a, b, idx, idy)
        self.assertTrue(numpy.array_equal(ref, a))

        b = numpy.arange(9, dtype=numpy.int32).reshape((3,3))
        a = numpy.arange(49, dtype=numpy.int32).reshape(7,7)
        ref = a.copy()
        ref[idx[:,None],idy] += b
        lib.takebak_2d(a, b, idx, idy)
        self.assertTrue(numpy.array_equal(ref, a)) 
開發者ID:pyscf,項目名稱:pyscf,代碼行數:18,代碼來源:test_numpy_helper.py

示例15: chunkWriteSelection

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import array_equal [as 別名]
def chunkWriteSelection(chunk_arr=None, slices=None, data=None):
    log.info("chunkWriteSelection")
    dims = chunk_arr.shape

    rank = len(dims)

    if rank == 0:
        msg = "No dimension passed to chunkReadSelection"
        raise ValueError(msg)
    if len(slices) != rank:
        msg = "Selection rank does not match dataset rank"
        raise ValueError(msg)
    if len(data.shape) != rank:
        msg = "Input arr does not match dataset rank"
        raise ValueError(msg)

    updated = False
    # check if the new data modifies the array or not
    if not np.array_equal(chunk_arr[slices], data):
        # update chunk array
        chunk_arr[slices] = data
        updated = True
    return updated 
開發者ID:HDFGroup,項目名稱:hsds,代碼行數:25,代碼來源:chunkUtil.py


注:本文中的numpy.array_equal方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。