當前位置: 首頁>>代碼示例>>Python>>正文


Python numpy.array方法代碼示例

本文整理匯總了Python中numpy.array方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.array方法的具體用法?Python numpy.array怎麽用?Python numpy.array使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在numpy的用法示例。


在下文中一共展示了numpy.array方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import array [as 別名]
def __init__(self, input_wave_file, output_wave_file, target_phrase):
        self.pop_size = 100
        self.elite_size = 10
        self.mutation_p = 0.005
        self.noise_stdev = 40
        self.noise_threshold = 1
        self.mu = 0.9
        self.alpha = 0.001
        self.max_iters = 3000
        self.num_points_estimate = 100
        self.delta_for_gradient = 100
        self.delta_for_perturbation = 1e3
        self.input_audio = load_wav(input_wave_file).astype(np.float32)
        self.pop = np.expand_dims(self.input_audio, axis=0)
        self.pop = np.tile(self.pop, (self.pop_size, 1))
        self.output_wave_file = output_wave_file
        self.target_phrase = target_phrase
        self.funcs = self.setup_graph(self.pop, np.array([toks.index(x) for x in target_phrase])) 
開發者ID:rtaori,項目名稱:Black-Box-Audio,代碼行數:20,代碼來源:run_audio_attack.py

示例2: create_lines

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import array [as 別名]
def create_lines(self, x, varieties):
        """
        Draw just the data portion.
        """
        lines = pd.DataFrame()
        for i, var in enumerate(varieties):
            self.legend.append(var)
            data = varieties[var]["data"]
            color = get_color(varieties[var], i)
            x_array = np.array(x)
            y_array = np.array(data)
            line = pd.DataFrame({"x": x_array,
                                 "y": y_array,
                                 "color": color,
                                 "var": var})
            lines = lines.append(line, ignore_index=True, sort=False)
        return lines 
開發者ID:gcallah,項目名稱:indras_net,代碼行數:19,代碼來源:display_methods.py

示例3: matrix_reduction

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import array [as 別名]
def matrix_reduction(agent):
    matrix, res = agent["strategy"]["data_collection"](agent)
    col = len(matrix[0])
    if col > len(matrix):  # not enought for matrix reduction
        return -1
    i = 0
    x = []
    while i < len(matrix) and len(x) == 0:
        A = numpy.array(matrix[i:i + col])
        b = numpy.array(res[i:i + col])
        try:
            x = numpy.linalg.solve(A, b)
        except numpy.linalg.LinAlgError:
            i += 1
    if len(x) == 0:
        return -1
    else:
        for emoji in agent["emoji_experienced"]:
            index = agent["emoji_experienced"][emoji]
            agent["emoji_scores"][emoji] = round(x[index][0], 2)
        agent["predicted_base_line"] = round(x[-1][0], 2)
        return 0 
開發者ID:gcallah,項目名稱:indras_net,代碼行數:24,代碼來源:buyer_action_s.py

示例4: setup

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import array [as 別名]
def setup(self, bottom, top):
        layer_params = yaml.load(self.param_str)
        self._layer_params = layer_params
        # default batch_size = 256
        self._batch_size = int(layer_params.get('batch_size', 256))
        self._resize = layer_params.get('resize', -1)
        self._mean_file = layer_params.get('mean_file', None)
        self._source_type = layer_params.get('source_type', 'CSV')
        self._shuffle = layer_params.get('shuffle', False)
        # read image_mean from file and preload all data into memory
        # will read either file or array into self._mean
        self.set_mean()
        self.preload_db()
        self._compressed = self._layer_params.get('compressed', True)
        if not self._compressed:
            self.decompress_data() 
開發者ID:liuxianming,項目名稱:Caffe-Python-Data-Layer,代碼行數:18,代碼來源:BasePythonDataLayer.py

示例5: get_next_minibatch

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import array [as 別名]
def get_next_minibatch(self):
        if self._prefetch:
            # get mini-batch from prefetcher
            batch = self._conn.recv()
        else:
            # generate using in-thread functions
            data = []
            p_data = []
            n_data = []
            label = []
            for i in range(self._batch_size):
                datum_ = self.get_a_datum()
                data.append(datum_[0])
                p_data.append(datum_[1])
                n_data.append(datum_[2])
                if len(datum_) == 4:
                    # datum and label / margin
                    label.append(datum_[-1])
            batch = [np.array(data),
                     np.array(p_data),
                     np.array(n_data)]
            if len(label):
                label = np.array(label).reshape(self._batch_size, 1, 1, 1)
                batch.append(label)
        return batch 
開發者ID:liuxianming,項目名稱:Caffe-Python-Data-Layer,代碼行數:27,代碼來源:TripletDataLayer.py

示例6: load_predictions

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import array [as 別名]
def load_predictions(env, nclasses):
    path = os.path.join(env.stats_dir(), "predictions.csv")

    if not os.path.exists(path):
        raise FileExistsError(path)

    with open(path, newline='') as csvfile:
        y_score = []
        y_test = []
        csv_reader = csv.reader(csvfile, dialect="excel")
        for row in csv_reader:
            assert len(row) == nclasses * 2
            y_score.append(list(map(float, row[:nclasses])))
            y_test.append(list(map(float, row[nclasses:])))
        
        y_score = np.array(y_score)
        y_test = np.array(y_test)

        return y_test, y_score 
開發者ID:mme,項目名稱:vergeml,代碼行數:21,代碼來源:__init__.py

示例7: _scale

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import array [as 別名]
def _scale(self, init_pos):
        _min = -0.5
        _max = 0.5
        pos = dict()
        max_x = max([init_pos[id][0] for id in init_pos])
        min_x = min([init_pos[id][0] for id in init_pos])
        max_y = max([init_pos[id][1] for id in init_pos])
        min_y = min([init_pos[id][1] for id in init_pos])
        for id in init_pos:
            x = init_pos[id][0]
            y = init_pos[id][1]
            # standardize
            x = (x - min_x) / (max_x - min_x)
            y = (y - min_y) / (max_y - min_y)
            # rescale
            x = x * (_max - _min) + _min
            y = y * (_max - _min) + _min
            pos[id] = np.array([x, y])
        return pos 
開發者ID:fabriziocosta,項目名稱:EDeN,代碼行數:21,代碼來源:graph_layout.py

示例8: make_train_test_sets

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import array [as 別名]
def make_train_test_sets(pos_graphs, neg_graphs,
                         test_proportion=.3, random_state=2):
    """make_train_test_sets."""
    random.seed(random_state)
    random.shuffle(pos_graphs)
    random.shuffle(neg_graphs)
    pos_dim = len(pos_graphs)
    neg_dim = len(neg_graphs)
    tr_pos_graphs = pos_graphs[:-int(pos_dim * test_proportion)]
    te_pos_graphs = pos_graphs[-int(pos_dim * test_proportion):]
    tr_neg_graphs = neg_graphs[:-int(neg_dim * test_proportion)]
    te_neg_graphs = neg_graphs[-int(neg_dim * test_proportion):]
    tr_graphs = tr_pos_graphs + tr_neg_graphs
    te_graphs = te_pos_graphs + te_neg_graphs
    tr_targets = [1] * len(tr_pos_graphs) + [0] * len(tr_neg_graphs)
    te_targets = [1] * len(te_pos_graphs) + [0] * len(te_neg_graphs)
    tr_graphs, tr_targets = paired_shuffle(tr_graphs, tr_targets)
    te_graphs, te_targets = paired_shuffle(te_graphs, te_targets)
    return (tr_graphs, np.array(tr_targets)), (te_graphs, np.array(te_targets)) 
開發者ID:fabriziocosta,項目名稱:EDeN,代碼行數:21,代碼來源:estimator_utils.py

示例9: plot_stats

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import array [as 別名]
def plot_stats(x=None, y=None, label=None, color='navy'):
    """plot_stats."""
    y = np.array(y)
    y0 = y[0]
    y1 = y[1]
    y2 = y[2]
    y3 = y[3]
    y4 = y[4]
    plt.fill_between(x, y3, y4, color=color, alpha=0.08)
    plt.fill_between(x, y1, y2, color=color, alpha=0.08)
    plt.plot(x, y0, '-', lw=2, color=color, label=label)
    plt.plot(x, y0,
             linestyle='None',
             markerfacecolor='white',
             markeredgecolor=color,
             marker='o',
             markeredgewidth=2,
             markersize=8) 
開發者ID:fabriziocosta,項目名稱:EDeN,代碼行數:20,代碼來源:estimator_utils.py

示例10: make_data_matrix

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import array [as 別名]
def make_data_matrix(positive_data_matrix=None,
                     negative_data_matrix=None,
                     target=None):
    """make_data_matrix."""
    assert(positive_data_matrix is not None), 'ERROR: expecting non null\
    positive_data_matrix'
    if negative_data_matrix is None:
        negative_data_matrix = positive_data_matrix.multiply(-1)
    if target is None and negative_data_matrix is not None:
        yp = [1] * positive_data_matrix.shape[0]
        yn = [-1] * negative_data_matrix.shape[0]
        y = np.array(yp + yn)
        data_matrix = vstack(
            [positive_data_matrix, negative_data_matrix], format="csr")
    if target is not None:
        data_matrix = positive_data_matrix
        y = target
    return data_matrix, y 
開發者ID:fabriziocosta,項目名稱:EDeN,代碼行數:20,代碼來源:ml.py

示例11: _annotate_importance

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import array [as 別名]
def _annotate_importance(self, seq, data_matrix):
        # compute distance from hyperplane as proxy of vertex importance
        if self.estimator is None:
            # if we do not provide an estimator then consider default margin of
            # 1 for all vertices
            scores = np.array([1] * data_matrix.shape[0])
        else:
            if hasattr(self.estimator, 'decision_function'):
                scores = self.estimator.decision_function(data_matrix)
            elif hasattr(self.estimator, 'predict_proba'):
                scores = self.estimator.predict_proba(data_matrix)
                scores = scores[:, -1]
        # compute the list of sparse vectors representation
        vec = []
        for i in range(data_matrix.shape[0]):
            vec.append(data_matrix.getrow(i))
        return scores, vec 
開發者ID:fabriziocosta,項目名稱:EDeN,代碼行數:19,代碼來源:sequence.py

示例12: lk

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import array [as 別名]
def lk(E=1.):
        """element stiffness matrix"""
        nu = 0.3
        k = np.array([0.5 - nu / 6., 0.125 + nu / 8., -0.25 - nu / 12.,
            -0.125 + 0.375 * nu, -0.25 + nu / 12., -0.125 - nu / 8., nu / 6.,
            0.125 - 0.375 * nu])
        KE = E / (1 - nu**2) * np.array([
            [k[0], k[1], k[2], k[3], k[4], k[5], k[6], k[7]],
            [k[1], k[0], k[7], k[6], k[5], k[4], k[3], k[2]],
            [k[2], k[7], k[0], k[5], k[6], k[3], k[4], k[1]],
            [k[3], k[6], k[5], k[0], k[7], k[2], k[1], k[4]],
            [k[4], k[5], k[6], k[7], k[0], k[1], k[2], k[3]],
            [k[5], k[4], k[3], k[2], k[1], k[0], k[7], k[6]],
            [k[6], k[3], k[4], k[1], k[2], k[7], k[0], k[5]],
            [k[7], k[2], k[1], k[4], k[3], k[6], k[5], k[0]]])
        return KE 
開發者ID:zfergus,項目名稱:fenics-topopt,代碼行數:18,代碼來源:problem.py

示例13: test_add_uniform_time_weights

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import array [as 別名]
def test_add_uniform_time_weights():
    time = np.array([15, 46, 74])
    data = np.zeros((3))
    ds = xr.DataArray(data,
                      coords=[time],
                      dims=[TIME_STR],
                      name='a').to_dataset()
    units_str = 'days since 2000-01-01 00:00:00'
    cal_str = 'noleap'
    ds[TIME_STR].attrs['units'] = units_str
    ds[TIME_STR].attrs['calendar'] = cal_str

    with pytest.raises(KeyError):
        ds[TIME_WEIGHTS_STR]

    ds = add_uniform_time_weights(ds)
    time_weights_expected = xr.DataArray(
        [1, 1, 1], coords=ds[TIME_STR].coords, name=TIME_WEIGHTS_STR)
    time_weights_expected.attrs['units'] = 'days'
    assert ds[TIME_WEIGHTS_STR].identical(time_weights_expected) 
開發者ID:spencerahill,項目名稱:aospy,代碼行數:22,代碼來源:test_utils_times.py

示例14: test_ensure_time_as_index_with_change

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import array [as 別名]
def test_ensure_time_as_index_with_change():
    # Time bounds array doesn't index time initially, which gets fixed.
    arr = xr.DataArray([-93], dims=[TIME_STR], coords={TIME_STR: [3]})
    arr[TIME_STR].attrs['units'] = 'days since 2000-01-01 00:00:00'
    arr[TIME_STR].attrs['calendar'] = 'standard'
    ds = arr.to_dataset(name='a')
    ds.coords[TIME_WEIGHTS_STR] = xr.DataArray(
        [1], dims=[TIME_STR], coords={TIME_STR: arr[TIME_STR]}
    )
    ds.coords[TIME_BOUNDS_STR] = xr.DataArray(
        [[3.5, 4.5]], dims=[TIME_STR, BOUNDS_STR],
        coords={TIME_STR: arr[TIME_STR]}
    )
    ds = ds.isel(**{TIME_STR: 0})
    actual = ensure_time_as_index(ds)
    expected = arr.to_dataset(name='a')
    expected.coords[TIME_WEIGHTS_STR] = xr.DataArray(
        [1], dims=[TIME_STR], coords={TIME_STR: arr[TIME_STR]}
    )
    expected.coords[TIME_BOUNDS_STR] = xr.DataArray(
        [[3.5, 4.5]], dims=[TIME_STR, BOUNDS_STR],
        coords={TIME_STR: arr[TIME_STR]}
        )
    xr.testing.assert_identical(actual, expected) 
開發者ID:spencerahill,項目名稱:aospy,代碼行數:26,代碼來源:test_utils_times.py

示例15: db

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import array [as 別名]
def db(audio):
    if len(audio.shape) > 1:
        maxx = np.max(np.abs(audio), axis=1)
        return 20 * np.log10(maxx) if np.any(maxx != 0) else np.array([0])
    maxx = np.max(np.abs(audio))
    return 20 * np.log10(maxx) if maxx != 0 else np.array([0]) 
開發者ID:rtaori,項目名稱:Black-Box-Audio,代碼行數:8,代碼來源:run_audio_attack.py


注:本文中的numpy.array方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。