本文整理匯總了Python中numpy.arcsin方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.arcsin方法的具體用法?Python numpy.arcsin怎麽用?Python numpy.arcsin使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類numpy
的用法示例。
在下文中一共展示了numpy.arcsin方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: arcsine
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import arcsin [as 別名]
def arcsine(x, null=(-np.inf, np.inf)):
'''
arcsine(x) is equivalent to asin(x) except that it also works on sparse arrays.
The optional argument null (default, (-numpy.inf, numpy.inf)) may be specified to indicate what
value(s) should be assigned when x < -1 or x > 1. If only one number is given, then it is used
for both values; otherwise the first value corresponds to <-1 and the second to >1. If null is
None, then an error is raised when invalid values are encountered.
'''
if sps.issparse(x):
x = x.copy()
x.data = arcsine(x.data, null=null, rtol=rtol, atol=atol)
return x
else: x = np.asarray(x)
try: (nln,nlp) = null
except Exception: (nln,nlp) = (null,null)
ii = None if nln is None else np.where(x < -1)
jj = None if nlp is None else np.where(x > 1)
if ii: x[ii] = 0
if jj: x[jj] = 0
x = np.arcsin(x)
if ii: x[ii] = nln
if jj: x[jj] = nlp
return x
示例2: inverse_method
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import arcsin [as 別名]
def inverse_method(self,N,d):
t = np.linspace(1e-3,0.999,N)
f = np.log( t / (1 - t) )
f = f/f[0]
psi= np.pi*f
cosPsi = np.cos(psi)
sinTheta = ( np.abs(cosPsi) + (1-np.abs(cosPsi))*np.random.rand(len(cosPsi)))
theta = np.arcsin(sinTheta)
theta = np.pi-theta + (2*theta - np.pi)*np.round(np.random.rand(len(t)))
cosPhi = cosPsi/sinTheta
phi = np.arccos(cosPhi)*(-1)**np.round(np.random.rand(len(t)))
coords = SkyCoord(phi*u.rad,(np.pi/2-theta)*u.rad,d*np.ones(len(phi))*u.pc)
return coords
示例3: mindmag
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import arcsin [as 別名]
def mindmag(self, s):
"""Calculates the minimum value of dMag for projected separation
Args:
s (float):
Projected separations (AU)
Returns:
mindmag (float):
Minimum planet delta magnitude
"""
if s == 0.0:
mindmag = self.cdmin1
elif s < self.rmin*np.sin(self.bstar):
mindmag = self.cdmin1-2.5*np.log10(self.Phi(np.arcsin(s/self.rmin)))
elif s < self.rmax*np.sin(self.bstar):
mindmag = self.cdmin2+5.0*np.log10(s)
elif s <= self.rmax:
mindmag = self.cdmin3-2.5*np.log10(self.Phi(np.arcsin(s/self.rmax)))
else:
mindmag = np.inf
return mindmag
示例4: maxdmag
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import arcsin [as 別名]
def maxdmag(self, s):
"""Calculates the maximum value of dMag for projected separation
Args:
s (float):
Projected separation (AU)
Returns:
maxdmag (float):
Maximum planet delta magnitude
"""
if s == 0.0:
maxdmag = self.cdmax - 2.5*np.log10(self.Phi(np.pi))
elif s < self.rmax:
maxdmag = self.cdmax - 2.5*np.log10(np.abs(self.Phi(np.pi-np.arcsin(s/self.rmax))))
else:
maxdmag = self.cdmax - 2.5*np.log10(self.Phi(np.pi/2.0))
return maxdmag
示例5: xyz2uvN
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import arcsin [as 別名]
def xyz2uvN(xyz, planeID=1):
ID1 = (int(planeID) - 1 + 0) % 3
ID2 = (int(planeID) - 1 + 1) % 3
ID3 = (int(planeID) - 1 + 2) % 3
normXY = np.sqrt(xyz[:, [ID1]] ** 2 + xyz[:, [ID2]] ** 2)
normXY[normXY < 0.000001] = 0.000001
normXYZ = np.sqrt(xyz[:, [ID1]] ** 2 + xyz[:, [ID2]] ** 2 + xyz[:, [ID3]] ** 2)
v = np.arcsin(xyz[:, [ID3]] / normXYZ)
u = np.arcsin(xyz[:, [ID1]] / normXY)
valid = (xyz[:, [ID2]] < 0) & (u >= 0)
u[valid] = np.pi - u[valid]
valid = (xyz[:, [ID2]] < 0) & (u <= 0)
u[valid] = -np.pi - u[valid]
uv = np.hstack([u, v])
uv[np.isnan(uv[:, 0]), 0] = 0
return uv
示例6: xyz_from_rotm
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import arcsin [as 別名]
def xyz_from_rotm(R):
R = R.reshape(-1,3,3)
xyz = np.empty((R.shape[0],3), dtype=R.dtype)
for bidx in range(R.shape[0]):
if R[bidx,0,2] < 1:
if R[bidx,0,2] > -1:
xyz[bidx,1] = np.arcsin(R[bidx,0,2])
xyz[bidx,0] = np.arctan2(-R[bidx,1,2], R[bidx,2,2])
xyz[bidx,2] = np.arctan2(-R[bidx,0,1], R[bidx,0,0])
else:
xyz[bidx,1] = -np.pi/2
xyz[bidx,0] = -np.arctan2(R[bidx,1,0],R[bidx,1,1])
xyz[bidx,2] = 0
else:
xyz[bidx,1] = np.pi/2
xyz[bidx,0] = np.arctan2(R[bidx,1,0], R[bidx,1,1])
xyz[bidx,2] = 0
return xyz.squeeze()
示例7: zyx_from_rotm
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import arcsin [as 別名]
def zyx_from_rotm(R):
R = R.reshape(-1,3,3)
zyx = np.empty((R.shape[0],3), dtype=R.dtype)
for bidx in range(R.shape[0]):
if R[bidx,2,0] < 1:
if R[bidx,2,0] > -1:
zyx[bidx,1] = np.arcsin(-R[bidx,2,0])
zyx[bidx,0] = np.arctan2(R[bidx,1,0], R[bidx,0,0])
zyx[bidx,2] = np.arctan2(R[bidx,2,1], R[bidx,2,2])
else:
zyx[bidx,1] = np.pi / 2
zyx[bidx,0] = -np.arctan2(-R[bidx,1,2], R[bidx,1,1])
zyx[bidx,2] = 0
else:
zyx[bidx,1] = -np.pi / 2
zyx[bidx,0] = np.arctan2(-R[bidx,1,2], R[bidx,1,1])
zyx[bidx,2] = 0
return zyx.squeeze()
示例8: test_branch_cuts
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import arcsin [as 別名]
def test_branch_cuts(self):
# check branch cuts and continuity on them
_check_branch_cut(np.log, -0.5, 1j, 1, -1, True)
_check_branch_cut(np.log2, -0.5, 1j, 1, -1, True)
_check_branch_cut(np.log10, -0.5, 1j, 1, -1, True)
_check_branch_cut(np.log1p, -1.5, 1j, 1, -1, True)
_check_branch_cut(np.sqrt, -0.5, 1j, 1, -1, True)
_check_branch_cut(np.arcsin, [ -2, 2], [1j, 1j], 1, -1, True)
_check_branch_cut(np.arccos, [ -2, 2], [1j, 1j], 1, -1, True)
_check_branch_cut(np.arctan, [0-2j, 2j], [1, 1], -1, 1, True)
_check_branch_cut(np.arcsinh, [0-2j, 2j], [1, 1], -1, 1, True)
_check_branch_cut(np.arccosh, [ -1, 0.5], [1j, 1j], 1, -1, True)
_check_branch_cut(np.arctanh, [ -2, 2], [1j, 1j], 1, -1, True)
# check against bogus branch cuts: assert continuity between quadrants
_check_branch_cut(np.arcsin, [0-2j, 2j], [ 1, 1], 1, 1)
_check_branch_cut(np.arccos, [0-2j, 2j], [ 1, 1], 1, 1)
_check_branch_cut(np.arctan, [ -2, 2], [1j, 1j], 1, 1)
_check_branch_cut(np.arcsinh, [ -2, 2, 0], [1j, 1j, 1], 1, 1)
_check_branch_cut(np.arccosh, [0-2j, 2j, 2], [1, 1, 1j], 1, 1)
_check_branch_cut(np.arctanh, [0-2j, 2j, 0], [1, 1, 1j], 1, 1)
示例9: test_branch_cuts_complex64
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import arcsin [as 別名]
def test_branch_cuts_complex64(self):
# check branch cuts and continuity on them
_check_branch_cut(np.log, -0.5, 1j, 1, -1, True, np.complex64)
_check_branch_cut(np.log2, -0.5, 1j, 1, -1, True, np.complex64)
_check_branch_cut(np.log10, -0.5, 1j, 1, -1, True, np.complex64)
_check_branch_cut(np.log1p, -1.5, 1j, 1, -1, True, np.complex64)
_check_branch_cut(np.sqrt, -0.5, 1j, 1, -1, True, np.complex64)
_check_branch_cut(np.arcsin, [ -2, 2], [1j, 1j], 1, -1, True, np.complex64)
_check_branch_cut(np.arccos, [ -2, 2], [1j, 1j], 1, -1, True, np.complex64)
_check_branch_cut(np.arctan, [0-2j, 2j], [1, 1], -1, 1, True, np.complex64)
_check_branch_cut(np.arcsinh, [0-2j, 2j], [1, 1], -1, 1, True, np.complex64)
_check_branch_cut(np.arccosh, [ -1, 0.5], [1j, 1j], 1, -1, True, np.complex64)
_check_branch_cut(np.arctanh, [ -2, 2], [1j, 1j], 1, -1, True, np.complex64)
# check against bogus branch cuts: assert continuity between quadrants
_check_branch_cut(np.arcsin, [0-2j, 2j], [ 1, 1], 1, 1, False, np.complex64)
_check_branch_cut(np.arccos, [0-2j, 2j], [ 1, 1], 1, 1, False, np.complex64)
_check_branch_cut(np.arctan, [ -2, 2], [1j, 1j], 1, 1, False, np.complex64)
_check_branch_cut(np.arcsinh, [ -2, 2, 0], [1j, 1j, 1], 1, 1, False, np.complex64)
_check_branch_cut(np.arccosh, [0-2j, 2j, 2], [1, 1, 1j], 1, 1, False, np.complex64)
_check_branch_cut(np.arctanh, [0-2j, 2j, 0], [1, 1, 1j], 1, 1, False, np.complex64)
示例10: test_against_cmath
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import arcsin [as 別名]
def test_against_cmath(self):
import cmath
points = [-1-1j, -1+1j, +1-1j, +1+1j]
name_map = {'arcsin': 'asin', 'arccos': 'acos', 'arctan': 'atan',
'arcsinh': 'asinh', 'arccosh': 'acosh', 'arctanh': 'atanh'}
atol = 4*np.finfo(complex).eps
for func in self.funcs:
fname = func.__name__.split('.')[-1]
cname = name_map.get(fname, fname)
try:
cfunc = getattr(cmath, cname)
except AttributeError:
continue
for p in points:
a = complex(func(np.complex_(p)))
b = cfunc(p)
assert_(abs(a - b) < atol, "%s %s: %s; cmath: %s" % (fname, p, a, b))
示例11: HaversineDistance
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import arcsin [as 別名]
def HaversineDistance(lon1,lat1,lon2,lat2):
"""
Function to calculate the great circle distance between two points
using the Haversine formula
"""
R = 6371. #Mean radius of the Earth
# convert decimal degrees to radians
lon1, lat1, lon2, lat2 = map(np.radians, [lon1, lat1, lon2, lat2])
# haversine formula
dlon = lon2 - lon1
dlat = lat2 - lat1
a = np.sin(dlat/2.)**2. + np.cos(lat1) * np.cos(lat2) * np.sin(dlon/2.)**2.
c = 2.*np.arcsin(np.sqrt(a))
distance = R * c
return distance
示例12: test_branch_cuts_complex64
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import arcsin [as 別名]
def test_branch_cuts_complex64(self):
# check branch cuts and continuity on them
yield _check_branch_cut, np.log, -0.5, 1j, 1, -1, True, np.complex64
yield _check_branch_cut, np.log2, -0.5, 1j, 1, -1, True, np.complex64
yield _check_branch_cut, np.log10, -0.5, 1j, 1, -1, True, np.complex64
yield _check_branch_cut, np.log1p, -1.5, 1j, 1, -1, True, np.complex64
yield _check_branch_cut, np.sqrt, -0.5, 1j, 1, -1, True, np.complex64
yield _check_branch_cut, np.arcsin, [ -2, 2], [1j, 1j], 1, -1, True, np.complex64
yield _check_branch_cut, np.arccos, [ -2, 2], [1j, 1j], 1, -1, True, np.complex64
yield _check_branch_cut, np.arctan, [0-2j, 2j], [1, 1], -1, 1, True, np.complex64
yield _check_branch_cut, np.arcsinh, [0-2j, 2j], [1, 1], -1, 1, True, np.complex64
yield _check_branch_cut, np.arccosh, [ -1, 0.5], [1j, 1j], 1, -1, True, np.complex64
yield _check_branch_cut, np.arctanh, [ -2, 2], [1j, 1j], 1, -1, True, np.complex64
# check against bogus branch cuts: assert continuity between quadrants
yield _check_branch_cut, np.arcsin, [0-2j, 2j], [ 1, 1], 1, 1, False, np.complex64
yield _check_branch_cut, np.arccos, [0-2j, 2j], [ 1, 1], 1, 1, False, np.complex64
yield _check_branch_cut, np.arctan, [ -2, 2], [1j, 1j], 1, 1, False, np.complex64
yield _check_branch_cut, np.arcsinh, [ -2, 2, 0], [1j, 1j, 1], 1, 1, False, np.complex64
yield _check_branch_cut, np.arccosh, [0-2j, 2j, 2], [1, 1, 1j], 1, 1, False, np.complex64
yield _check_branch_cut, np.arctanh, [0-2j, 2j, 0], [1, 1, 1j], 1, 1, False, np.complex64
示例13: test_against_cmath
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import arcsin [as 別名]
def test_against_cmath(self):
import cmath
points = [-1-1j, -1+1j, +1-1j, +1+1j]
name_map = {'arcsin': 'asin', 'arccos': 'acos', 'arctan': 'atan',
'arcsinh': 'asinh', 'arccosh': 'acosh', 'arctanh': 'atanh'}
atol = 4*np.finfo(np.complex).eps
for func in self.funcs:
fname = func.__name__.split('.')[-1]
cname = name_map.get(fname, fname)
try:
cfunc = getattr(cmath, cname)
except AttributeError:
continue
for p in points:
a = complex(func(np.complex_(p)))
b = cfunc(p)
assert_(abs(a - b) < atol, "%s %s: %s; cmath: %s" % (fname, p, a, b))
示例14: get_direction
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import arcsin [as 別名]
def get_direction(self):
tau = [0, 0, 0]
theta = [0, 0, 0]
buf = b''.join(self.queue)
buf = np.fromstring(buf, dtype='int16')
for i, v in enumerate(self.pair):
tau[i], _ = gcc_phat(buf[v[0]::8], buf[v[1]::8], fs=self.sample_rate, max_tau=MAX_TDOA_6P1,
interp=1)
theta[i] = np.arcsin(tau[i] / MAX_TDOA_6P1) * 180 / np.pi
min_index = np.argmin(np.abs(tau))
if (min_index != 0 and theta[min_index - 1] >= 0) or (min_index == 0 and theta[len(self.pair) - 1] < 0):
best_guess = (theta[min_index] + 360) % 360
else:
best_guess = (180 - theta[min_index])
best_guess = (best_guess + 120 + min_index * 60) % 360
return best_guess
示例15: get_direction
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import arcsin [as 別名]
def get_direction(self):
tau = [0, 0, 0]
theta = [0, 0, 0]
buf = b''.join(self.queue)
buf = np.fromstring(buf, dtype='int16')
for i, v in enumerate(self.pair):
tau[i], _ = gcc_phat(buf[v[0]::8], buf[v[1]::8], fs=self.sample_rate, max_tau=MAX_TDOA_6,
interp=1)
theta[i] = np.arcsin(tau[i] / MAX_TDOA_6) * 180 / np.pi
min_index = np.argmin(np.abs(tau))
if (min_index != 0 and theta[min_index - 1] >= 0) or (min_index == 0 and theta[len(self.pair) - 1] < 0):
best_guess = (theta[min_index] + 360) % 360
else:
best_guess = (180 - theta[min_index])
best_guess = (best_guess + 30 + min_index * 60) % 360
return best_guess