當前位置: 首頁>>代碼示例>>Python>>正文


Python numpy.apply_along_axis方法代碼示例

本文整理匯總了Python中numpy.apply_along_axis方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.apply_along_axis方法的具體用法?Python numpy.apply_along_axis怎麽用?Python numpy.apply_along_axis使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在numpy的用法示例。


在下文中一共展示了numpy.apply_along_axis方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _get_bp_indexes_labranchor

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import apply_along_axis [as 別名]
def _get_bp_indexes_labranchor(self, soi):
        """
        Get indexes of branch point regions in given sequences.

        :param soi: batch of sequences of interest for introns (intron-3..intron+6)
        :return: array of predicted bp indexes
        """
        encoded = [onehot(str(seq)[self.acc_i - 70:self.acc_i]) for seq in np.nditer(soi)]
        labr_in = np.stack(encoded, axis=0)
        out = self.labranchor.predict_on_batch(labr_in)
        # for each row, pick the base with max branchpoint probability, and get its index
        max_indexes = np.apply_along_axis(lambda x: self.acc_i - 70 + np.argmax(x), axis=1, arr=out)
        # self.write_bp(max_indexes)
        return max_indexes

# TODO boilerplate
#    def write_bp(self, max_indexes):
#        max_indexes = [str(seq) for seq in np.nditer(max_indexes)]
#        with open(''.join([this_dir, "/../customBP/example_files/bp_idx_chr21_labr.txt"]), "a") as bp_idx_file:
#            bp_idx_file.write('\n'.join(max_indexes))
#            bp_idx_file.write('\n')
#            bp_idx_file.close() 
開發者ID:kipoi,項目名稱:models,代碼行數:24,代碼來源:model.py

示例2: apply

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import apply_along_axis [as 別名]
def apply(self, X, meta):
        def apply_one(x):
            x -= x.mean()
            z = np.cumsum(x)
            r = (np.maximum.accumulate(z) - np.minimum.accumulate(z))[1:]
            s = pd.expanding_std(x)[1:]

            # prevent division by 0
            s[np.where(s == 0)] = 1e-12
            r += 1e-12

            y_axis = np.log(r / s)
            x_axis = np.log(np.arange(1, len(y_axis) + 1))
            x_axis = np.vstack([x_axis, np.ones(len(x_axis))]).T

            m, b = np.linalg.lstsq(x_axis, y_axis)[0]
            return m

        return np.apply_along_axis(apply_one, -1, X) 
開發者ID:MichaelHills,項目名稱:seizure-prediction,代碼行數:21,代碼來源:transforms.py

示例3: test_apply_along_axis_matrix

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import apply_along_axis [as 別名]
def test_apply_along_axis_matrix():
    # this test is particularly malicious because matrix
    # refuses to become 1d
    # 2018-04-29: moved here from core.tests.test_shape_base.
    def double(row):
        return row * 2

    m = np.matrix([[0, 1], [2, 3]])
    expected = np.matrix([[0, 2], [4, 6]])

    result = np.apply_along_axis(double, 0, m)
    assert_(isinstance(result, np.matrix))
    assert_array_equal(result, expected)

    result = np.apply_along_axis(double, 1, m)
    assert_(isinstance(result, np.matrix))
    assert_array_equal(result, expected) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:19,代碼來源:test_interaction.py

示例4: _nanmedian

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import apply_along_axis [as 別名]
def _nanmedian(a, axis=None, out=None, overwrite_input=False):
    """
    Private function that doesn't support extended axis or keepdims.
    These methods are extended to this function using _ureduce
    See nanmedian for parameter usage

    """
    if axis is None or a.ndim == 1:
        part = a.ravel()
        if out is None:
            return _nanmedian1d(part, overwrite_input)
        else:
            out[...] = _nanmedian1d(part, overwrite_input)
            return out
    else:
        # for small medians use sort + indexing which is still faster than
        # apply_along_axis
        # benchmarked with shuffled (50, 50, x) containing a few NaN
        if a.shape[axis] < 600:
            return _nanmedian_small(a, axis, out, overwrite_input)
        result = np.apply_along_axis(_nanmedian1d, axis, a, overwrite_input)
        if out is not None:
            out[...] = result
        return result 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:26,代碼來源:nanfunctions.py

示例5: _nanquantile_unchecked

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import apply_along_axis [as 別名]
def _nanquantile_unchecked(a, q, axis=None, out=None, overwrite_input=False,
                           interpolation='linear', keepdims=np._NoValue):
    """Assumes that q is in [0, 1], and is an ndarray"""
    # apply_along_axis in _nanpercentile doesn't handle empty arrays well,
    # so deal them upfront
    if a.size == 0:
        return np.nanmean(a, axis, out=out, keepdims=keepdims)

    r, k = function_base._ureduce(
        a, func=_nanquantile_ureduce_func, q=q, axis=axis, out=out,
        overwrite_input=overwrite_input, interpolation=interpolation
    )
    if keepdims and keepdims is not np._NoValue:
        return r.reshape(q.shape + k)
    else:
        return r 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:18,代碼來源:nanfunctions.py

示例6: test_preserve_subclass

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import apply_along_axis [as 別名]
def test_preserve_subclass(self):
        def double(row):
            return row * 2

        class MyNDArray(np.ndarray):
            pass

        m = np.array([[0, 1], [2, 3]]).view(MyNDArray)
        expected = np.array([[0, 2], [4, 6]]).view(MyNDArray)

        result = apply_along_axis(double, 0, m)
        assert_(isinstance(result, MyNDArray))
        assert_array_equal(result, expected)

        result = apply_along_axis(double, 1, m)
        assert_(isinstance(result, MyNDArray))
        assert_array_equal(result, expected) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:19,代碼來源:test_shape_base.py

示例7: test_empty

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import apply_along_axis [as 別名]
def test_empty(self):
        # can't apply_along_axis when there's no chance to call the function
        def never_call(x):
            assert_(False) # should never be reached

        a = np.empty((0, 0))
        assert_raises(ValueError, np.apply_along_axis, never_call, 0, a)
        assert_raises(ValueError, np.apply_along_axis, never_call, 1, a)

        # but it's sometimes ok with some non-zero dimensions
        def empty_to_1(x):
            assert_(len(x) == 0)
            return 1

        a = np.empty((10, 0))
        actual = np.apply_along_axis(empty_to_1, 1, a)
        assert_equal(actual, np.ones(10))
        assert_raises(ValueError, np.apply_along_axis, empty_to_1, 0, a) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:20,代碼來源:test_shape_base.py

示例8: test_rank_methods_frame

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import apply_along_axis [as 別名]
def test_rank_methods_frame(self):
        pytest.importorskip('scipy.stats.special')
        rankdata = pytest.importorskip('scipy.stats.rankdata')
        import scipy

        xs = np.random.randint(0, 21, (100, 26))
        xs = (xs - 10.0) / 10.0
        cols = [chr(ord('z') - i) for i in range(xs.shape[1])]

        for vals in [xs, xs + 1e6, xs * 1e-6]:
            df = DataFrame(vals, columns=cols)

            for ax in [0, 1]:
                for m in ['average', 'min', 'max', 'first', 'dense']:
                    result = df.rank(axis=ax, method=m)
                    sprank = np.apply_along_axis(
                        rankdata, ax, vals,
                        m if m != 'first' else 'ordinal')
                    sprank = sprank.astype(np.float64)
                    expected = DataFrame(sprank, columns=cols)

                    if (LooseVersion(scipy.__version__) >=
                            LooseVersion('0.17.0')):
                        expected = expected.astype('float64')
                    tm.assert_frame_equal(result, expected) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:27,代碼來源:test_rank.py

示例9: apply_raw

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import apply_along_axis [as 別名]
def apply_raw(self):
        """ apply to the values as a numpy array """

        try:
            result = reduction.reduce(self.values, self.f, axis=self.axis)
        except Exception:
            result = np.apply_along_axis(self.f, self.axis, self.values)

        # TODO: mixed type case
        if result.ndim == 2:
            return self.obj._constructor(result,
                                         index=self.index,
                                         columns=self.columns)
        else:
            return self.obj._constructor_sliced(result,
                                                index=self.agg_axis) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:18,代碼來源:apply.py

示例10: _add_shadows_get_imps

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import apply_along_axis [as 別名]
def _add_shadows_get_imps(self, X, y, dec_reg):
        # find features that are tentative still
        x_cur_ind = np.where(dec_reg >= 0)[0]
        x_cur = np.copy(X[:, x_cur_ind])
        x_cur_w = x_cur.shape[1]
        # deep copy the matrix for the shadow matrix
        x_sha = np.copy(x_cur)
        # make sure there's at least 5 columns in the shadow matrix for
        while (x_sha.shape[1] < 5):
            x_sha = np.hstack((x_sha, x_sha))
        # shuffle xSha
        x_sha = np.apply_along_axis(self._get_shuffle, 0, x_sha)
        # get importance of the merged matrix
        imp = self._get_imp(np.hstack((x_cur, x_sha)), y)
        # separate importances of real and shadow features
        imp_sha = imp[x_cur_w:]
        imp_real = np.zeros(X.shape[1])
        imp_real[:] = np.nan
        imp_real[x_cur_ind] = imp[:x_cur_w]
        return imp_real, imp_sha 
開發者ID:scikit-learn-contrib,項目名稱:boruta_py,代碼行數:22,代碼來源:boruta_py.py

示例11: spc2npow

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import apply_along_axis [as 別名]
def spc2npow(spectrogram):
    """Calculate normalized power sequence from spectrogram

    Parameters
    ----------
    spectrogram : array, shape (T, `fftlen / 2 + 1`)
        Array of spectrum envelope

    Return
    ------
    npow : array, shape (`T`, `1`)
        Normalized power sequence

    """

    # frame based processing
    npow = np.apply_along_axis(_spvec2pow, 1, spectrogram)

    meanpow = np.mean(npow)
    npow = 10.0 * np.log10(npow / meanpow)

    return npow 
開發者ID:k2kobayashi,項目名稱:sprocket,代碼行數:24,代碼來源:parameterizer.py

示例12: plot_cost_to_go_mountain_car

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import apply_along_axis [as 別名]
def plot_cost_to_go_mountain_car(env, estimator, num_tiles=20):
    x = np.linspace(env.observation_space.low[0], env.observation_space.high[0], num=num_tiles)
    y = np.linspace(env.observation_space.low[1], env.observation_space.high[1], num=num_tiles)
    X, Y = np.meshgrid(x, y)
    Z = np.apply_along_axis(lambda _: -np.max(estimator.predict(_)), 2, np.dstack([X, Y]))

    fig = plt.figure(figsize=(10, 5))
    ax = fig.add_subplot(111, projection='3d')
    surf = ax.plot_surface(X, Y, Z, rstride=1, cstride=1,
                           cmap=matplotlib.cm.coolwarm, vmin=-1.0, vmax=1.0)
    ax.set_xlabel('Position')
    ax.set_ylabel('Velocity')
    ax.set_zlabel('Value')
    ax.set_title("Mountain \"Cost To Go\" Function")
    fig.colorbar(surf)
    plt.show() 
開發者ID:DanielTakeshi,項目名稱:rl_algorithms,代碼行數:18,代碼來源:plotting.py

示例13: assign

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import apply_along_axis [as 別名]
def assign(self, coords, mask=None, output=None):
        if output is None:
            output = numpy.zeros((len(coords),), dtype=index_dtype)

        if mask is None:
            mask = numpy.ones((len(coords),), dtype=numpy.bool_)
        else:
            mask = numpy.require(mask, dtype=numpy.bool_)

        coord_subset = coords[mask]
        fnvals = numpy.empty((len(coord_subset), len(self.functions)), dtype=index_dtype)
        for ifn, fn in enumerate(self.functions):
            rsl = numpy.apply_along_axis(fn,0,coord_subset)
            if rsl.ndim > 1:
                # this should work like a squeeze, unless the function returned something truly
                # stupid (e.g., a 3d array with at least two dimensions greater than 1), in which
                # case a broadcast error will occur
                fnvals[:,ifn] = rsl.flat
            else:
                fnvals[:,ifn] = rsl
        amask = numpy.require(fnvals.argmax(axis=1), dtype=index_dtype)
        output[mask] = amask
        return output 
開發者ID:westpa,項目名稱:westpa,代碼行數:25,代碼來源:assign.py

示例14: init_pop_numpy

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import apply_along_axis [as 別名]
def init_pop_numpy(task, NP, **kwargs):
	r"""Custom population initialization function for numpy individual type.

	Args:
		task (Task): Optimization task.
		np (int): Population size.
		**kwargs (Dict[str, Any]): Additional arguments.

	Returns:
		Tuple[numpy.ndarray, numpy.ndarray[float]):
			1. Initialized population.
			2. Initialized populations fitness/function values.
	"""
	pop = full((NP, task.D), 0.0)
	fpop = apply_along_axis(task.eval, 1, pop)
	return pop, fpop 
開發者ID:NiaOrg,項目名稱:NiaPy,代碼行數:18,代碼來源:test_algorithm.py

示例15: defaultNumPyInit

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import apply_along_axis [as 別名]
def defaultNumPyInit(task, NP, rnd=rand, **kwargs):
	r"""Initialize starting population that is represented with `numpy.ndarray` with shape `{NP, task.D}`.

	Args:
		task (Task): Optimization task.
		NP (int): Number of individuals in population.
		rnd (Optional[mtrand.RandomState]): Random number generator.
		kwargs (Dict[str, Any]): Additional arguments.

	Returns:
		Tuple[numpy.ndarray, numpy.ndarray[float]]:
			1. New population with shape `{NP, task.D}`.
			2. New population function/fitness values.
	"""
	pop = task.Lower + rnd.rand(NP, task.D) * task.bRange
	fpop = apply_along_axis(task.eval, 1, pop)
	return pop, fpop 
開發者ID:NiaOrg,項目名稱:NiaPy,代碼行數:19,代碼來源:algorithm.py


注:本文中的numpy.apply_along_axis方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。