本文整理匯總了Python中numpy.append方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.append方法的具體用法?Python numpy.append怎麽用?Python numpy.append使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類numpy
的用法示例。
在下文中一共展示了numpy.append方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: add_exon
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import append [as 別名]
def add_exon(self, chrom, strand, start, stop):
if strand != self.strand or chrom != self.chrom:
print("The exon has different chrom or strand to the transcript.")
return
_exon = np.array([start, stop], "int").reshape(1, 2)
self.exons = np.append(self.exons, _exon, axis=0)
self.exons = np.sort(self.exons, axis=0)
self.tranL += abs(int(stop) - int(start) + 1)
self.exonNum += 1
self.seglen = np.zeros(self.exons.shape[0] * 2 - 1, "int")
self.seglen[0] = self.exons[0, 1] - self.exons[0, 0] + 1
for i in range(1, self.exons.shape[0]):
self.seglen[i * 2 - 1] = self.exons[i, 0] - self.exons[i - 1, 1] - 1
self.seglen[i * 2] = self.exons[i, 1] - self.exons[i, 0] + 1
if ["-", "-1", "0", 0, -1].count(self.strand) > 0:
self.seglen = self.seglen[::-1]
示例2: add_exon
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import append [as 別名]
def add_exon(self, chrom, strand, start, stop):
if strand != self.strand or chrom != self.chrom:
print("The exon has different chrom or strand to the transcript.")
return
_exon = np.array([start, stop], "int").reshape(1,2)
self.exons = np.append(self.exons, _exon, axis=0)
self.exons = np.sort(self.exons, axis=0)
self.tranL += abs(int(stop) - int(start) + 1)
self.exonNum += 1
self.seglen = np.zeros(self.exons.shape[0] * 2 - 1, "int")
self.seglen[0] = self.exons[0,1]-self.exons[0,0] + 1
for i in range(1, self.exons.shape[0]):
self.seglen[i*2-1] = self.exons[i,0]-self.exons[i-1,1] - 1
self.seglen[i*2] = self.exons[i,1]-self.exons[i,0] + 1
if ["-","-1","0",0,-1].count(self.strand) > 0:
self.seglen = self.seglen[::-1]
示例3: test_elementwisesum_with_type
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import append [as 別名]
def test_elementwisesum_with_type():
dev_types = [[mx.gpu(0), [np.float64, np.float32, np.float16]],
[mx.cpu(0), [np.float64, np.float32]] ]
for num_args in range(1, 6):
ews_arg_shape = {}
for i in range(num_args):
ews_arg_shape['ews_arg'+str(i)] = (2, 10)
sym = mx.sym.ElementWiseSum(name='ews', num_args=num_args)
ctx_list = []
for dev, types in dev_types:
for dtype in types:
ews_arg_dtype = {'type_dict':{}}
for i in range(num_args):
ews_arg_dtype['type_dict']['ews_arg'+str(i)] = dtype
ctx_elem = {'ctx': dev}
ctx_elem.update(ews_arg_shape)
ctx_elem.update(ews_arg_dtype)
ctx_list.append(ctx_elem)
check_consistency(sym, ctx_list)
示例4: test_embedding_with_type
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import append [as 別名]
def test_embedding_with_type():
def test_embedding_helper(data_types, weight_types, low_pad, high_pad):
NVD = [[20, 10, 20], [200, 10, 300]]
for N, V, D in NVD:
sym = mx.sym.Embedding(name='embedding', input_dim=V, output_dim=D)
ctx_list = []
for data_type in data_types:
for weight_type in weight_types:
ctx_list.append({'ctx': mx.gpu(0), 'embedding_data': (N,),
'type_dict': {'embedding_data': data_type, 'embedding_weight': weight_type}})
ctx_list.append({'ctx': mx.cpu(0), 'embedding_data': (N,),
'type_dict': {'embedding_data': data_type, 'embedding_weight': weight_type}})
arg_params = {'embedding_data': np.random.randint(low=-low_pad, high=V+high_pad, size=(N,))}
check_consistency(sym, ctx_list, grad_req={'embedding_data': 'null','embedding_weight': 'write'},
arg_params=arg_params)
data_types = [np.float16, np.float32, np.float64, np.int32]
weight_types = [np.float16, np.float32, np.float64]
test_embedding_helper(data_types, weight_types, 5, 5)
data_types = [np.uint8]
weight_types = [np.float16, np.float32, np.float64]
test_embedding_helper(data_types, weight_types, 0, 5)
示例5: create_random_buffer
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import append [as 別名]
def create_random_buffer(max_width, max_height):
scale = randf()
w = int(max(max_width * scale, 1))
h = int(max(max_height * scale, 1))
arr = []
red, green, blue = randf(), randf(), randf()
for y in range(h):
arr.append([])
for x in range(w):
if randf() < 0.1:
arr[y].append([red * 255.0, green * 255.0, blue * 255.0, 255])
else:
arr[y].append([255, 255, 255, 0])
return Buffer.from_array(np.array(arr, dtype=np.uint8), buffer_type='i', drop_last_dim=True)
示例6: create_dataset
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import append [as 別名]
def create_dataset(training_dir_path, labels):
X = []
for i in _zipped_folders_labels_images(training_dir_path, labels):
for fileName in i[2]:
file_path = os.path.join(i[0], fileName)
img = face_recognition_api.load_image_file(file_path)
imgEncoding = face_recognition_api.face_encodings(img)
if len(imgEncoding) > 1:
print('\x1b[0;37;43m' + 'More than one face found in {}. Only considering the first face.'.format(file_path) + '\x1b[0m')
if len(imgEncoding) == 0:
print('\x1b[0;37;41m' + 'No face found in {}. Ignoring file.'.format(file_path) + '\x1b[0m')
else:
print('Encoded {} successfully.'.format(file_path))
X.append(np.append(imgEncoding[0], i[1]))
return X
示例7: stellar_mass
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import append [as 別名]
def stellar_mass(self):
"""Populates target list with 'true' and 'approximate' stellar masses
This method calculates stellar mass via the formula relating absolute V
magnitude and stellar mass. The values are in units of solar mass.
Function called by reset sim
"""
# 'approximate' stellar mass
self.MsEst = (10.**(0.002456*self.MV**2 - 0.09711*self.MV + 0.4365))*u.solMass
# normally distributed 'error'
err = (np.random.random(len(self.MV))*2. - 1.)*0.07
self.MsTrue = (1. + err)*self.MsEst
# if additional filters are desired, need self.catalog_atts fully populated
if not hasattr(self.catalog_atts,'MsEst'):
self.catalog_atts.append('MsEst')
if not hasattr(self.catalog_atts,'MsTrue'):
self.catalog_atts.append('MsTrue')
示例8: loadAliasFile
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import append [as 別名]
def loadAliasFile(self):
"""
Args:
Returns:
alias ():
list
"""
#OLD aliasname = 'alias_4_11_2019.pkl'
aliasname = 'alias_10_07_2019.pkl'
tmp1 = inspect.getfile(self.__class__).split('/')[:-2]
tmp1.append('util')
self.classpath = '/'.join(tmp1)
#self.classpath = os.path.split(inspect.getfile(self.__class__))[0]
#vprint(inspect.getfile(self.__class__))
self.alias_datapath = os.path.join(self.classpath, aliasname)
#Load pkl and outspec files
try:
with open(self.alias_datapath, 'rb') as f:#load from cache
alias = pickle.load(f, encoding='latin1')
except:
vprint('Failed to open fullPathPKL %s'%self.alias_datapath)
pass
return alias
##########################################################
示例9: join
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import append [as 別名]
def join(self, another):
"""
:param m: BaseMesh
:return:
"""
if another is None:
raise AttributeError("another BaseMesh instance is required")
if not isinstance(another, BaseMesh):
raise TypeError("anther must be an instance of BaseMesh")
self.data = numpy.append(self.data, another.data)
self.normals = numpy.append(self.normals, another.normals, axis=0)
self.vectors = numpy.append(self.vectors, another.vectors, axis=0)
self.attr = numpy.append(self.attr, another.attr, axis=0)
return self
示例10: zxy_grid
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import append [as 別名]
def zxy_grid(co_y, tymin, tymax, subs, c, t, c_peat, t_peat):
# create linespace grid between bottom and top of tri z
#subs = 7
t_min = np.min(tymin)
t_max = np.max(tymax)
divs = np.linspace(t_min, t_max, num=subs, dtype=np.float32)
# figure out which triangles and which co are in each section
co_bools = (co_y > divs[:-1][:, nax]) & (co_y < divs[1:][:, nax])
tri_bools = (tymin < divs[1:][:, nax]) & (tymax > divs[:-1][:, nax])
for i, j in zip(co_bools, tri_bools):
if (np.sum(i) > 0) & (np.sum(j) > 0):
c3 = c[i]
t3 = t[j]
c_peat.append(np.repeat(c3, t3.shape[0]))
t_peat.append(np.tile(t3, c3.shape[0]))
示例11: __init__
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import append [as 別名]
def __init__(self, filename):
self._filename = filename
print 'Loading BCF file to memory ... '+filename
file = open(filename, 'rb')
size = numpy.fromstring(file.read(8), dtype=numpy.uint64)
file_sizes = numpy.fromstring(file.read(8*size), dtype=numpy.uint64)
self._offsets = numpy.append(numpy.uint64(0),
numpy.add.accumulate(file_sizes))
self._memory = file.read()
file.close()
示例12: compute_b
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import append [as 別名]
def compute_b(G_lst, GtG_lst, beta_lst, Rc0, num_bands, a_ri):
"""
compute the uniform sinusoidal samples b from the updated annihilating
filter coeffiients.
:param GtG_lst: list of G^H G for different subbands
:param beta_lst: list of beta-s for different subbands
:param Rc0: right-dual matrix, here it is the convolution matrix associated with c
:param num_bands: number of bands
:param L: size of b: L by 1
:param a_ri: a 2D numpy array. each column corresponds to the measurements within a subband
:return:
"""
b_lst = []
a_Gb_lst = []
for loop in range(num_bands):
GtG_loop = GtG_lst[loop]
beta_loop = beta_lst[loop]
b_loop = beta_loop - \
linalg.solve(GtG_loop,
np.dot(Rc0.T,
linalg.solve(np.dot(Rc0, linalg.solve(GtG_loop, Rc0.T)),
np.dot(Rc0, beta_loop)))
)
b_lst.append(b_loop)
a_Gb_lst.append(a_ri[:, loop] - np.dot(G_lst[loop], b_loop))
return np.column_stack(b_lst), linalg.norm(np.concatenate(a_Gb_lst))
示例13: drawFloorCrop
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import append [as 別名]
def drawFloorCrop(event, x, y, flags, params):
global perspectiveMatrix, name, RENEW_TETRAGON
imgCroppingPolygon = np.zeros_like(params['imgFloorCorners'])
if event == cv2.EVENT_RBUTTONUP:
cv2.destroyWindow(f'Floor Corners for {name}')
if len(params['croppingPolygons'][name]) > 4 and event == cv2.EVENT_LBUTTONUP:
RENEW_TETRAGON = True
h = params['imgFloorCorners'].shape[0]
# delete 5th extra vertex of the floor cropping tetragon
params['croppingPolygons'][name] = np.delete(params['croppingPolygons'][name], -1, 0)
params['croppingPolygons'][name] = params['croppingPolygons'][name] - [h,0]
# Sort cropping tetragon vertices counter-clockwise starting with top left
params['croppingPolygons'][name] = counterclockwiseSort(params['croppingPolygons'][name])
# Get the matrix of perspective transformation
params['croppingPolygons'][name] = np.reshape(params['croppingPolygons'][name], (4,2))
tetragonVertices = np.float32(params['croppingPolygons'][name])
tetragonVerticesUpd = np.float32([[0,0], [0,h], [h,h], [h,0]])
perspectiveMatrix[name] = cv2.getPerspectiveTransform(tetragonVertices, tetragonVerticesUpd)
if event == cv2.EVENT_LBUTTONDOWN:
if len(params['croppingPolygons'][name]) == 4 and RENEW_TETRAGON:
params['croppingPolygons'][name] = np.array([[0,0]])
RENEW_TETRAGON = False
if len(params['croppingPolygons'][name]) == 1:
params['croppingPolygons'][name][0] = [x,y]
params['croppingPolygons'][name] = np.append(params['croppingPolygons'][name], [[x,y]], axis=0)
if event == cv2.EVENT_MOUSEMOVE and not (len(params['croppingPolygons'][name]) == 4 and RENEW_TETRAGON):
params['croppingPolygons'][name][-1] = [x,y]
if len(params['croppingPolygons'][name]) > 1:
cv2.fillPoly(
imgCroppingPolygon,
[np.reshape(
params['croppingPolygons'][name],
(len(params['croppingPolygons'][name]),2)
)],
BGR_COLOR['green'], cv2.LINE_AA)
imgCroppingPolygon = cv2.addWeighted(params['imgFloorCorners'], 1.0, imgCroppingPolygon, 0.5, 0.)
cv2.imshow(f'Floor Corners for {name}', imgCroppingPolygon)
示例14: add_transcipt
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import append [as 別名]
def add_transcipt(self, transcript):
self.trans.append(transcript)
self.tranNum += 1
示例15: get_gene_info
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import append [as 別名]
def get_gene_info(self):
RV = [self.geneID, self.geneName, self.chrom, self.strand, self.start,
self.stop, self.biotype]
_trans = []
for t in self.trans:
_trans.append(t.tranID)
RV.append(",".join(_trans))
return RV