當前位置: 首頁>>代碼示例>>Python>>正文


Python numpy.any方法代碼示例

本文整理匯總了Python中numpy.any方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.any方法的具體用法?Python numpy.any怎麽用?Python numpy.any使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在numpy的用法示例。


在下文中一共展示了numpy.any方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: add_intercept

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import any [as 別名]
def add_intercept(self, X):
        """Add 1's to data as last features."""
        # Data shape
        N, D = X.shape

        # Check if there's not already an intercept column
        if np.any(np.sum(X, axis=0) == N):

            # Report
            print('Intercept is not the last feature. Swapping..')

            # Find which column contains the intercept
            intercept_index = np.argwhere(np.sum(X, axis=0) == N)

            # Swap intercept to last
            X = X[:, np.setdiff1d(np.arange(D), intercept_index)]

        # Add intercept as last column
        X = np.hstack((X, np.ones((N, 1))))

        # Append column of 1's to data, and increment dimensionality
        return X, D+1 
開發者ID:wmkouw,項目名稱:libTLDA,代碼行數:24,代碼來源:tcpr.py

示例2: is_pos_def

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import any [as 別名]
def is_pos_def(self, A):
        """
        Check for positive definiteness.

        Parameters
        ---------
        A : array
            square symmetric matrix.

        Returns
        -------
        bool
            whether matrix is positive-definite.
            Warning! Returns false for arrays containing inf or NaN.


        """
        # Check for valid numbers
        if np.any(np.isnan(A)) or np.any(np.isinf(A)):
            return False

        else:
            return np.all(np.real(np.linalg.eigvals(A)) > 0) 
開發者ID:wmkouw,項目名稱:libTLDA,代碼行數:25,代碼來源:suba.py

示例3: set_grid_data

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import any [as 別名]
def set_grid_data(self):
        """Populate the attrs that hold grid data."""
        if self._grid_data_is_set:
            return
        self._set_mult_grid_attr()
        if not np.any(getattr(self, 'sfc_area', None)):
            try:
                sfc_area = _grid_sfc_area(self.lon, self.lat, self.lon_bounds,
                                          self.lat_bounds)
            except AttributeError:
                sfc_area = _grid_sfc_area(self.lon, self.lat)
            self.sfc_area = sfc_area
        try:
            self.levs_thick = utils.vertcoord.level_thickness(self.level)
        except AttributeError:
            self.level = None
            self.levs_thick = None
        self._grid_data_is_set = True 
開發者ID:spencerahill,項目名稱:aospy,代碼行數:20,代碼來源:model.py

示例4: query

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import any [as 別名]
def query(self, coords, order=1):
        """
        Returns the map value at the specified location(s) on the sky.

        Args:
            coords (`astropy.coordinates.SkyCoord`): The coordinates to query.
            order (Optional[int]): Interpolation order to use. Defaults to `1`,
                for linear interpolation.

        Returns:
            A float array containing the map value at every input coordinate.
            The shape of the output will be the same as the shape of the
            coordinates stored by `coords`.
        """
        out = np.full(len(coords.l.deg), np.nan, dtype='f4')

        for pole in self.poles:
            m = (coords.b.deg >= 0) if pole == 'ngp' else (coords.b.deg < 0)

            if np.any(m):
                data, w = self._data[pole]
                x, y = w.wcs_world2pix(coords.l.deg[m], coords.b.deg[m], 0)
                out[m] = map_coordinates(data, [y, x], order=order, mode='nearest')

        return out 
開發者ID:gregreen,項目名稱:dustmaps,代碼行數:27,代碼來源:sfd.py

示例5: fetch

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import any [as 別名]
def fetch(clobber=False):
    """
    Downloads the 3D dust map of Leike & Ensslin (2019).

    Args:
        clobber (Optional[bool]): If ``True``, any existing file will be
            overwritten, even if it appears to match. If ``False`` (the
            default), ``fetch()`` will attempt to determine if the dataset
            already exists. This determination is not 100\% robust against data
            corruption.
    """
    dest_dir = fname_pattern = os.path.join(data_dir(), 'leike_ensslin_2019')
    fname = os.path.join(dest_dir, 'simple_cube.h5')
    
    # Check if the FITS table already exists
    md5sum = 'f54e01c253453117e3770575bed35078'

    if (not clobber) and fetch_utils.check_md5sum(fname, md5sum):
        print('File appears to exist already. Call `fetch(clobber=True)` '
              'to force overwriting of existing file.')
        return

    # Download from the server
    url = 'https://zenodo.org/record/2577337/files/simple_cube.h5?download=1'
    fetch_utils.download_and_verify(url, md5sum, fname) 
開發者ID:gregreen,項目名稱:dustmaps,代碼行數:27,代碼來源:leike_ensslin_2019.py

示例6: _compute_gradients

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import any [as 別名]
def _compute_gradients(self, loss_fn, x, unused_optim_state):
        """Compute a new value of `x` to minimize `loss_fn`.

        Args:
            loss_fn: a callable that takes `x`, a batch of images, and returns
                a batch of loss values. `x` will be optimized to minimize
                `loss_fn(x)`.
            x: A list of Tensors, the values to be updated. This is analogous
                to the `var_list` argument in standard TF Optimizer.
            unused_optim_state: A (possibly nested) dict, containing any state
                info needed for the optimizer.

        Returns:
            new_x: A list of Tensors, the same length as `x`, which are updated
            new_optim_state: A dict, with the same structure as `optim_state`,
                which have been updated.
        """

        # Assumes `x` is a list,
        # and contains a tensor representing a batch of images
        assert len(x) == 1 and isinstance(x, list), \
            'x should be a list and contain only one image tensor'
        x = x[0]
        loss = reduce_mean(loss_fn(x), axis=0)
        return tf.gradients(loss, x) 
開發者ID:StephanZheng,項目名稱:neural-fingerprinting,代碼行數:27,代碼來源:attacks_tf.py

示例7: _prepro_cpg

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import any [as 別名]
def _prepro_cpg(self, states, dists):
        """Preprocess the state and distance of neighboring CpG sites."""
        prepro_states = []
        prepro_dists = []
        for state, dist in zip(states, dists):
            nan = state == dat.CPG_NAN
            if np.any(nan):
                state[nan] = np.random.binomial(1, state[~nan].mean(),
                                                nan.sum())
                dist[nan] = self.cpg_max_dist
            dist = np.minimum(dist, self.cpg_max_dist) / self.cpg_max_dist
            prepro_states.append(np.expand_dims(state, 1))
            prepro_dists.append(np.expand_dims(dist, 1))
        prepro_states = np.concatenate(prepro_states, axis=1)
        prepro_dists = np.concatenate(prepro_dists, axis=1)
        if self.cpg_wlen:
            center = prepro_states.shape[2] // 2
            delta = self.cpg_wlen // 2
            tmp = slice(center - delta, center + delta)
            prepro_states = prepro_states[:, :, tmp]
            prepro_dists = prepro_dists[:, :, tmp]
        return (prepro_states, prepro_dists) 
開發者ID:kipoi,項目名稱:models,代碼行數:24,代碼來源:dataloader_m.py

示例8: test_convert_docs

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import any [as 別名]
def test_convert_docs(self):
        _, df = convert_docs(self.test_pool, include_stress=False)
        test_energies = df[df['dtype'] == 'energy']['y_orig']
        self.assertFalse(np.any(test_energies - self.test_energies))
        test_forces = df[df['dtype'] == 'force']['y_orig']
        for force1, force2 in zip(test_forces, np.array(self.test_forces).ravel()):
            self.assertEqual(force1, force2)

        _, df = convert_docs(self.test_pool, include_stress=True)
        test_energies = df[df['dtype'] == 'energy']['y_orig']
        self.assertFalse(np.any(test_energies - self.test_energies))
        test_forces = df[df['dtype'] == 'force']['y_orig']
        for force1, force2 in zip(test_forces, np.array(self.test_forces).ravel()):
            self.assertEqual(force1, force2)
        test_stresses = df[df['dtype'] == 'stress']['y_orig']
        for stress1, stress2 in zip(test_stresses, np.array(self.test_stresses).ravel()):
            self.assertEqual(stress1, stress2) 
開發者ID:materialsvirtuallab,項目名稱:mlearn,代碼行數:19,代碼來源:test_data.py

示例9: point_on_segment

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import any [as 別名]
def point_on_segment(ac, b, atol=1e-8):
    '''
    point_on_segment((a,b), c) yields True if point x is on segment (a,b) and False otherwise. Note
    that this differs from point_in_segment in that a point that if c is equal to a or b it is
    considered 'on' but not 'in' the segment.
    The option atol can be given and is used only to test for difference from 0; by default it is
    1e-8.
    '''
    (a,c) = ac
    abc = [np.asarray(u) for u in (a,b,c)]
    if any(len(u.shape) > 1 for u in abc): (a,b,c) = [np.reshape(u,(len(u),-1)) for u in abc]
    else:                                  (a,b,c) = abc
    vab = b - a
    vbc = c - b
    vac = c - a
    dab = np.sqrt(np.sum(vab**2, axis=0))
    dbc = np.sqrt(np.sum(vbc**2, axis=0))
    dac = np.sqrt(np.sum(vac**2, axis=0))
    return np.isclose(dab + dbc - dac, 0, atol=atol) 
開發者ID:noahbenson,項目名稱:neuropythy,代碼行數:21,代碼來源:util.py

示例10: point_in_segment

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import any [as 別名]
def point_in_segment(ac, b, atol=1e-8):
    '''
    point_in_segment((a,b), c) yields True if point x is in segment (a,b) and False otherwise. Note
    that this differs from point_on_segment in that a point that if c is equal to a or b it is
    considered 'on' but not 'in' the segment.
    The option atol can be given and is used only to test for difference from 0; by default it is
    1e-8.
    '''
    (a,c) = ac
    abc = [np.asarray(u) for u in (a,b,c)]
    if any(len(u.shape) > 1 for u in abc): (a,b,c) = [np.reshape(u,(len(u),-1)) for u in abc]
    else:                                  (a,b,c) = abc
    vab = b - a
    vbc = c - b
    vac = c - a
    dab = np.sqrt(np.sum(vab**2, axis=0))
    dbc = np.sqrt(np.sum(vbc**2, axis=0))
    dac = np.sqrt(np.sum(vac**2, axis=0))
    return (np.isclose(dab + dbc - dac, 0, atol=atol) &
            ~np.isclose(dac - dab, 0, atol=atol) &
            ~np.isclose(dac - dbc, 0, atol=atol)) 
開發者ID:noahbenson,項目名稱:neuropythy,代碼行數:23,代碼來源:util.py

示例11: should_step_get_rejected

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import any [as 別名]
def should_step_get_rejected(self, standardError):
        """
        Given a standardError, return whether to keep or reject new
        standardError according to the constraint rejectProbability.
        In addition, if flexible flag is set to True, total number of atoms
        not satisfying constraints definition must be decreasing or at least
        remain the same.

        :Parameters:
            #. standardError (number): Standard error to compare with
               Constraint's standard error.

        :Returns:
            #. result (boolean): True to reject step, False to accept.
        """
        if self.__flexible:
            # compute if step should get rejected as a RigidConstraint
            return super(_DistanceConstraint, self).should_step_get_rejected(standardError)
        else:
            cond = self.activeAtomsDataAfterMove["number"]>self.activeAtomsDataBeforeMove["number"]
            if np.any(cond):
                return True
            return False 
開發者ID:bachiraoun,項目名稱:fullrmc,代碼行數:25,代碼來源:DistanceConstraints.py

示例12: optimize

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import any [as 別名]
def optimize(self, sess, feed_dict):
    reg_input, reg_weight, old_values, targets = sess.run(
        [self.inputs, self.regression_weight, self.values, self.targets],
        feed_dict=feed_dict)

    intended_values = targets * self.mix_frac + old_values * (1 - self.mix_frac)

    # taken from rllab
    reg_coeff = 1e-5
    for _ in range(5):
      best_fit_weight = np.linalg.lstsq(
          reg_input.T.dot(reg_input) +
          reg_coeff * np.identity(reg_input.shape[1]),
          reg_input.T.dot(intended_values))[0]
      if not np.any(np.isnan(best_fit_weight)):
        break
      reg_coeff *= 10

    if len(best_fit_weight.shape) == 1:
      best_fit_weight = np.expand_dims(best_fit_weight, -1)

    sess.run(self.update_regression_weight,
             feed_dict={self.new_regression_weight: best_fit_weight}) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:25,代碼來源:optimizers.py

示例13: _testDecoder

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import any [as 別名]
def _testDecoder(self,
                   height=64,
                   width=64,
                   channels=4,
                   batch_norm_params=None,
                   decoder=models.small_decoder):
    codes = tf.to_float(np.random.rand(32, 100))

    with self.test_session() as sess:
      output = decoder(
          codes,
          height=height,
          width=width,
          channels=channels,
          batch_norm_params=batch_norm_params)
      sess.run(tf.global_variables_initializer())
      output_np = sess.run(output)
    self.assertEqual(output_np.shape, (32, height, width, channels))
    self.assertTrue(np.any(output_np))
    self.assertTrue(np.all(np.isfinite(output_np))) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:22,代碼來源:models_test.py

示例14: validate_and_fill_geometry

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import any [as 別名]
def validate_and_fill_geometry(geom=None, tooclose=0.1, copy=True):
    """Check `geom` for overlapping atoms. Return flattened"""

    npgeom = np.array(geom, copy=copy, dtype=np.float).reshape((-1, 3))

    # Upper triangular
    metric = tooclose ** 2
    tooclose_inds = []
    for x in range(npgeom.shape[0]):
        diffs = npgeom[x] - npgeom[x + 1 :]
        dists = np.einsum("ij,ij->i", diffs, diffs)

        # Record issues
        if np.any(dists < metric):
            indices = np.where(dists < metric)[0]
            tooclose_inds.extend([(x, y, dist) for y, dist in zip(indices + x + 1, dists[indices] ** 0.5)])

    if tooclose_inds:
        raise ValidationError(
            """Following atoms are too close: {}""".format([(i, j, dist) for i, j, dist in tooclose_inds])
        )

    return {"geom": npgeom.reshape((-1))} 
開發者ID:MolSSI,項目名稱:QCElemental,代碼行數:25,代碼來源:from_arrays.py

示例15: test_forward

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import any [as 別名]
def test_forward(self, batch, return_masks=True):
        """
        test method. wrapper around forward pass of network without usage of any ground truth information.
        prepares input data for processing and stores outputs in a dictionary.
        :param batch: dictionary containing 'data'
        :param return_masks: boolean. If True, full resolution masks are returned for all proposals (speed trade-off).
        :return: results_dict: dictionary with keys:
               'boxes': list over batch elements. each batch element is a list of boxes. each box is a dictionary:
                       [[{box_0}, ... {box_n}], [{box_0}, ... {box_n}], ...]
               'seg_preds': pixel-wise class predictions (b, 1, y, x, (z)) with values [0, n_classes]
        """
        img = batch['data']
        img = torch.from_numpy(img).float().cuda()
        _, _, _, detections, detection_masks = self.forward(img)
        results_dict = get_results(self.cf, img.shape, detections, detection_masks, return_masks=return_masks)
        return results_dict 
開發者ID:MIC-DKFZ,項目名稱:medicaldetectiontoolkit,代碼行數:18,代碼來源:mrcnn.py


注:本文中的numpy.any方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。