當前位置: 首頁>>代碼示例>>Python>>正文


Python numpy.amin方法代碼示例

本文整理匯總了Python中numpy.amin方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.amin方法的具體用法?Python numpy.amin怎麽用?Python numpy.amin使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在numpy的用法示例。


在下文中一共展示了numpy.amin方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _check_satisfy_constraints

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import amin [as 別名]
def _check_satisfy_constraints(self, label, xmin, ymin, xmax, ymax, width, height):
        """Check if constrains are satisfied"""
        if (xmax - xmin) * (ymax - ymin) < 2:
            return False  # only 1 pixel
        x1 = float(xmin) / width
        y1 = float(ymin) / height
        x2 = float(xmax) / width
        y2 = float(ymax) / height
        object_areas = self._calculate_areas(label[:, 1:])
        valid_objects = np.where(object_areas * width * height > 2)[0]
        if valid_objects.size < 1:
            return False
        intersects = self._intersect(label[valid_objects, 1:], x1, y1, x2, y2)
        coverages = self._calculate_areas(intersects) / object_areas[valid_objects]
        coverages = coverages[np.where(coverages > 0)[0]]
        return coverages.size > 0 and np.amin(coverages) > self.min_object_covered 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:18,代碼來源:detection.py

示例2: draw_outputs

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import amin [as 別名]
def draw_outputs(img, outputs, class_names=None):
    boxes, objectness, classes = outputs
    #boxes, objectness, classes = boxes[0], objectness[0], classes[0]
    wh = np.flip(img.shape[0:2])
    if img.ndim == 2 or img.shape[2] == 1:
        img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
    min_wh = np.amin(wh)
    if min_wh <= 100:
        font_size = 0.5
    else:
        font_size = 1
    for i in range(classes.shape[0]):
        x1y1 = tuple((np.array(boxes[i][0:2]) * wh).astype(np.int32))
        x2y2 = tuple((np.array(boxes[i][2:4]) * wh).astype(np.int32))
        img = cv2.rectangle(img, x1y1, x2y2, (255, 0, 0), 1)
        img = cv2.putText(img, '{}'.format(int(classes[i])), x1y1, cv2.FONT_HERSHEY_COMPLEX_SMALL, font_size,
                          (0, 0, 255), 1)
    return img 
開發者ID:akkaze,項目名稱:tf2-yolo3,代碼行數:20,代碼來源:utils.py

示例3: draw_labels

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import amin [as 別名]
def draw_labels(x, y, class_names=None):
    img = x.numpy()
    if img.ndim == 2 or img.shape[2] == 1:
        img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
    boxes, classes = tf.split(y, (4, 1), axis=-1)
    classes = classes[..., 0]
    wh = np.flip(img.shape[0:2])
    min_wh = np.amin(wh)
    if min_wh <= 100:
        font_size = 0.5
    else:
        font_size = 1
    for i in range(len(boxes)):
        x1y1 = tuple((np.array(boxes[i][0:2]) * wh).astype(np.int32))
        x2y2 = tuple((np.array(boxes[i][2:4]) * wh).astype(np.int32))
        img = cv2.rectangle(img, x1y1, x2y2, (255, 0, 0), 1)
        if class_names:
            img = cv2.putText(img, class_names[classes[i]], x1y1, cv2.FONT_HERSHEY_COMPLEX_SMALL, font_size,
                              (0, 0, 255), 1)
        else:
            img = cv2.putText(img, str(classes[i]), x1y1, cv2.FONT_HERSHEY_COMPLEX_SMALL, 1, (0, 0, 255), 1)
    return img 
開發者ID:akkaze,項目名稱:tf2-yolo3,代碼行數:24,代碼來源:utils.py

示例4: get_wmin_wmax_tmax_ia_def

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import amin [as 別名]
def get_wmin_wmax_tmax_ia_def(self, tol):
    from numpy import log, exp, sqrt, where, amin, amax
    """ 
      This is a default choice of the wmin and wmax parameters for a log grid along 
      imaginary axis. The default choice is based on the eigenvalues. 
    """
    E = self.ksn2e[0,0,:]
    E_fermi = self.fermi_energy
    E_homo = amax(E[where(E<=E_fermi)])
    E_gap  = amin(E[where(E>E_fermi)]) - E_homo  
    E_maxdiff = amax(E) - amin(E)
    d = amin(abs(E_homo-E)[where(abs(E_homo-E)>1e-4)])
    wmin_def = sqrt(tol * (d**3) * (E_gap**3)/(d**2+E_gap**2))
    wmax_def = (E_maxdiff**2/tol)**(0.250)
    tmax_def = -log(tol)/ (E_gap)
    tmin_def = -100*log(1.0-tol)/E_maxdiff
    return wmin_def, wmax_def, tmin_def,tmax_def 
開發者ID:pyscf,項目名稱:pyscf,代碼行數:19,代碼來源:gw.py

示例5: assign_mesh

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import amin [as 別名]
def assign_mesh(self, mesh):
        interface = self.interface
        box = interface.universe.dimensions[:3]
        interface.target_mesh = mesh
        if not isinstance(interface.target_mesh, (int, float)):
            raise TypeError(messages.MESH_NAN)
        if interface.target_mesh <= 0:
            raise ValueError(messages.MESH_NEGATIVE)
        if interface.target_mesh >= np.amin(box) / 2.:
            raise ValueError(messages.MESH_LARGE)

        try:
            np.arange(int(self.interface.alpha / self.interface.target_mesh))
        except BaseException:
            print(("Error while initializing ITIM: alpha ({0:f}) too large or\
                  mesh ({1:f}) too small".format(self.interface.alpha,
                                                 self.interface.target_mesh)))
            raise ValueError 
開發者ID:Marcello-Sega,項目名稱:pytim,代碼行數:20,代碼來源:sanity_check.py

示例6: guess_normal

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import amin [as 別名]
def guess_normal(universe, group):
    """
    Guess the normal of a liquid slab

    """
    universe.atoms.pack_into_box()
    dim = universe.coord.dimensions

    delta = []
    for direction in range(0, 3):
        histo, _ = np.histogram(
            group.positions[:, direction],
            bins=5,
            range=(0, dim[direction]),
            density=True)
        max_val = np.amax(histo)
        min_val = np.amin(histo)
        delta.append(np.sqrt((max_val - min_val)**2))

    if np.max(delta) / np.min(delta) < 5.0:
        print("Warning: the result of the automatic normal detection (",
              np.argmax(delta), ") is not reliable")
    return np.argmax(delta) 
開發者ID:Marcello-Sega,項目名稱:pytim,代碼行數:25,代碼來源:utilities.py

示例7: refine_room_region

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import amin [as 別名]
def refine_room_region(cw_mask, rm_ind):
	label_rm, num_label = ndimage.label((1-cw_mask))
	new_rm_ind = np.zeros(rm_ind.shape)
	for j in xrange(1, num_label+1):  
		mask = (label_rm == j).astype(np.uint8)
		ys, xs = np.where(mask!=0)
		area = (np.amax(xs)-np.amin(xs))*(np.amax(ys)-np.amin(ys))
		if area < 100:
			continue
		else:
			room_types, type_counts = np.unique(mask*rm_ind, return_counts=True)
			if len(room_types) > 1:
				room_types = room_types[1:] # ignore background type which is zero
				type_counts = type_counts[1:] # ignore background count
			new_rm_ind += mask*room_types[np.argmax(type_counts)]

	return new_rm_ind 
開發者ID:zlzeng,項目名稱:DeepFloorplan,代碼行數:19,代碼來源:util.py

示例8: discrete_ackley

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import amin [as 別名]
def discrete_ackley(vector):
	# takes k-dimensional vector
	vector = np.array(vector)
	vector = 100 * vector - 50
	bounds = [1.0, 2.0, 3.0, 4.0, 5.0]
	bounds = np.array(bounds)**2
	result = 5
	for bound in bounds[::-1]:
		if np.amax(np.abs(vector)) < bound:
			result -= 1
	bounds = [1.25, 2.0, 2.5]
	bounds = np.array(bounds)**2

	domain = np.linspace(-50, 50, 10)
	dx = domain[1] - domain[0]
	imaged = np.array([np.amin(np.abs(element - domain)) for element in vector]) 
	new_res = 5
	for bound in bounds[::-1]:
		if np.amax(np.abs(imaged)) < bound:
			new_res -= 1
		result = np.amin([result, new_res])
	result = np.amin([4, result])
	return result 
開發者ID:aspuru-guzik-group,項目名稱:phoenics,代碼行數:25,代碼來源:benchmark_functions.py

示例9: discrete_michalewicz

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import amin [as 別名]
def discrete_michalewicz(vector):
	vector = np.array(vector)
	vector = 100 * vector - 40

	bounds = [1.0, 2.0, 3.0, 4.0, 5.0]
	bounds = np.array(bounds)**2
	result = 5
	for bound in bounds[::-1]:
		if np.amax(np.abs(vector)) < bound:
			result -= 1
	bounds = [1.25, 2.0, 2.5, 3.0]
	bounds = np.array(bounds)**2
	new_res = 5
	for bound in bounds[::-1]:
		if np.amin(np.abs(vector)) < bound:
			new_res -= 1
	result = np.amin([result, new_res, 4])
	return result 
開發者ID:aspuru-guzik-group,項目名稱:phoenics,代碼行數:20,代碼來源:benchmark_functions.py

示例10: _generate_sampled

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import amin [as 別名]
def _generate_sampled(self, num_samples, observ_dict):
		# clean observations
		obs_params, obs_losses = self.observation_parser.parse(observ_dict)
		lowest_loss   = np.amin(obs_losses)
		lowest_params = obs_params[np.argmin(obs_losses)]

		self.obs_params, self.obs_losses = self.observation_parser._raw_obs_params, self.observation_parser._raw_obs_losses
		self._compute_characteristic_distances()

		# create and sample the model
		print('# running density estimation')
		self.network = BayesianNeuralNetwork(self.var_dicts, obs_params, obs_losses, self.param_dict['general']['batch_size'], backend = self.param_dict['general']['backend'])
		self.network.create_model()
		self.network.sample()
		self.network.build_penalties()

		# sample the acquisition function
		print('# proposing new samples')
		self.proposed_samples = self.acq_func_sampler.sample(lowest_params, self.network.penalty_contributions, 
															 self.network.lambda_values, parallel = self.param_dict['general']['parallel_evaluations']) 
開發者ID:aspuru-guzik-group,項目名稱:phoenics,代碼行數:22,代碼來源:phoenics.py

示例11: rescale_losses

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import amin [as 別名]
def rescale_losses(self, losses):
		for index in range(losses.shape[1]):
			min_loss, max_loss = np.amin(losses[:, index]), np.amax(losses[:, index])
			losses[:, index] = (losses[:, index] - min_loss) / (max_loss - min_loss)
			losses = np.where(np.isnan(losses), 0., losses)

#		print(losses.shape)
#		quit()
		self.unscaled_losses = losses.transpose()

		self._build_tolerances()
		self._construct_objective()

		return self.loss.transpose()

#======================================================================== 
開發者ID:aspuru-guzik-group,項目名稱:phoenics,代碼行數:18,代碼來源:hierarchies.py

示例12: test_state_aggregation_modes

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import amin [as 別名]
def test_state_aggregation_modes(self):
    """Tests that all state updates tensors can be aggregated."""
    x_fn = lambda: tf.random.uniform((5,))
    encoder = gather_encoder.GatherEncoder.from_encoder(
        core_encoder.EncoderComposer(
            test_utils.StateUpdateTensorsEncodingStage()).make(),
        tf.TensorSpec.from_tensor(x_fn()))

    iteration = _make_iteration_function(encoder, x_fn, 3)
    data = self.evaluate(iteration(encoder.initial_state()))

    expected_sum = np.sum(data.x)
    expected_min = np.amin(data.x)
    expected_max = np.amax(data.x)
    expected_stack_values = 15  # 3 values of shape 5.
    expected_state = [
        expected_sum, expected_min, expected_max, expected_stack_values
    ]
    # We are not in control of ordering of the elements in state tuple.
    self.assertAllClose(sorted(expected_state), sorted(data.updated_state)) 
開發者ID:tensorflow,項目名稱:model-optimization,代碼行數:22,代碼來源:gather_encoder_test.py

示例13: step

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import amin [as 別名]
def step(self, action):
        action = action.ravel()

        a_lb, a_ub = self.action_space.bounds
        action = np.clip(action, a_lb, a_ub).ravel()

        next_obs = self.dynamics.forward(self.observation, action)
        o_lb, o_ub = self.observation_space.bounds
        next_obs = np.clip(next_obs, o_lb, o_ub)

        reward = self.compute_reward(self.observation, action)
        cur_position = self.observation
        dist_to_goal = np.amin([
            np.linalg.norm(cur_position - goal_position)
            for goal_position in self.goal_positions
        ])
        done = dist_to_goal < self.goal_threshold
        if done:
            reward += self.goal_reward

        self.observation = np.copy(next_obs)
        return next_obs, reward, done, {'pos': next_obs} 
開發者ID:nosyndicate,項目名稱:pytorchrl,代碼行數:24,代碼來源:multigoal_env.py

示例14: compute_reward

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import amin [as 別名]
def compute_reward(self, observation, action):
        # penalize the L2 norm of acceleration
        # noinspection PyTypeChecker
        action_cost = np.sum(action ** 2) * self.action_cost_coeff

        # penalize squared dist to goal
        cur_position = observation
        # noinspection PyTypeChecker
        goal_cost = np.amin([
            np.sum((cur_position - goal_position) ** 2)
            for goal_position in self.goal_positions
        ])

        # penalize staying with the log barriers
        costs = [action_cost, goal_cost]
        reward = -np.sum(costs)
        return reward 
開發者ID:nosyndicate,項目名稱:pytorchrl,代碼行數:19,代碼來源:multigoal_env.py

示例15: plot_position_cost

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import amin [as 別名]
def plot_position_cost(self, ax):
        delta = 0.01
        x_min, x_max = tuple(1.1 * np.array(self.xlim))
        y_min, y_max = tuple(1.1 * np.array(self.ylim))
        X, Y = np.meshgrid(
            np.arange(x_min, x_max, delta),
            np.arange(y_min, y_max, delta)
        )
        goal_costs = np.amin([
            (X - goal_x) ** 2 + (Y - goal_y) ** 2
            for goal_x, goal_y in self.goal_positions
        ], axis=0)
        costs = goal_costs

        contours = ax.contour(X, Y, costs, 20)
        ax.clabel(contours, inline=1, fontsize=10, fmt='%.0f')
        ax.set_xlim([x_min, x_max])
        ax.set_ylim([y_min, y_max])
        goal = ax.plot(self.goal_positions[:, 0],
                       self.goal_positions[:, 1], 'ro')
        return [contours, goal] 
開發者ID:nosyndicate,項目名稱:pytorchrl,代碼行數:23,代碼來源:multigoal_env.py


注:本文中的numpy.amin方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。