當前位置: 首頁>>代碼示例>>Python>>正文


Python numpy.amax方法代碼示例

本文整理匯總了Python中numpy.amax方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.amax方法的具體用法?Python numpy.amax怎麽用?Python numpy.amax使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在numpy的用法示例。


在下文中一共展示了numpy.amax方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: prune_non_overlapping_boxes

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import amax [as 別名]
def prune_non_overlapping_boxes(boxlist1, boxlist2, minoverlap=0.0):
  """Prunes the boxes in boxlist1 that overlap less than thresh with boxlist2.

  For each box in boxlist1, we want its IOA to be more than minoverlap with
  at least one of the boxes in boxlist2. If it does not, we remove it.

  Args:
    boxlist1: BoxList holding N boxes.
    boxlist2: BoxList holding M boxes.
    minoverlap: Minimum required overlap between boxes, to count them as
                overlapping.

  Returns:
    A pruned boxlist with size [N', 4].
  """
  intersection_over_area = ioa(boxlist2, boxlist1)  # [M, N] tensor
  intersection_over_area = np.amax(intersection_over_area, axis=0)  # [N] tensor
  keep_bool = np.greater_equal(intersection_over_area, np.array(minoverlap))
  keep_inds = np.nonzero(keep_bool)[0]
  new_boxlist1 = gather(boxlist1, keep_inds)
  return new_boxlist1 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:23,代碼來源:np_box_list_ops.py

示例2: OutlierDetection

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import amax [as 別名]
def OutlierDetection(CMat, s):
    n = np.amax(s)
    _, N = CMat.shape
    OutlierIndx = list()
    FailCnt = 0
    Fail = False

    for i in range(0, N):
        c = CMat[:, i]
        if np.sum(np.isnan(c)) >= 1:
            OutlierIndx.append(i)
            FailCnt += 1
    sc = s.astype(float)
    sc[OutlierIndx] = np.nan
    CMatC = CMat.astype(float)
    CMatC[OutlierIndx, :] = np.nan
    CMatC[:, OutlierIndx] = np.nan
    OutlierIndx = OutlierIndx

    if FailCnt > (N - n):
        CMatC = np.nan
        sc = np.nan
        Fail = True
    return CMatC, sc, OutlierIndx, Fail 
開發者ID:abhinav4192,項目名稱:sparse-subspace-clustering-python,代碼行數:26,代碼來源:OutlierDetection.py

示例3: get_wmin_wmax_tmax_ia_def

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import amax [as 別名]
def get_wmin_wmax_tmax_ia_def(self, tol):
    from numpy import log, exp, sqrt, where, amin, amax
    """ 
      This is a default choice of the wmin and wmax parameters for a log grid along 
      imaginary axis. The default choice is based on the eigenvalues. 
    """
    E = self.ksn2e[0,0,:]
    E_fermi = self.fermi_energy
    E_homo = amax(E[where(E<=E_fermi)])
    E_gap  = amin(E[where(E>E_fermi)]) - E_homo  
    E_maxdiff = amax(E) - amin(E)
    d = amin(abs(E_homo-E)[where(abs(E_homo-E)>1e-4)])
    wmin_def = sqrt(tol * (d**3) * (E_gap**3)/(d**2+E_gap**2))
    wmax_def = (E_maxdiff**2/tol)**(0.250)
    tmax_def = -log(tol)/ (E_gap)
    tmin_def = -100*log(1.0-tol)/E_maxdiff
    return wmin_def, wmax_def, tmin_def,tmax_def 
開發者ID:pyscf,項目名稱:pyscf,代碼行數:19,代碼來源:gw.py

示例4: si_c_check

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import amax [as 別名]
def si_c_check (self, tol = 1e-5):
    """
    This compares np.solve and LinearOpt-lgmres methods for solving linear equation (1-v\chi_{0}) * W_c = v\chi_{0}v
    """
    import time
    import numpy as np
    ww = 1j*self.ww_ia
    t = time.time()
    si0_1 = self.si_c(ww)      #method 1:  numpy.linalg.solve
    t1 = time.time() - t
    print('numpy: {} sec'.format(t1))
    t2 = time.time()
    si0_2 = self.si_c2(ww)     #method 2:  scipy.sparse.linalg.lgmres
    t3 = time.time() - t2
    print('lgmres: {} sec'.format(t3))
    summ = abs(si0_1 + si0_2).sum()
    diff = abs(si0_1 - si0_2).sum() 
    if diff/summ < tol and diff/si0_1.size < tol:
       print('OK! scipy.lgmres methods and np.linalg.solve have identical results')
    else:
       print('Results (W_c) are NOT similar!')     
    return [[diff/summ] , [np.amax(abs(diff))] ,[tol]]

  #@profile 
開發者ID:pyscf,項目名稱:pyscf,代碼行數:26,代碼來源:gw_iter.py

示例5: __init__

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import amax [as 別名]
def __init__(self, ao_log, sp):

    self.ion = ao_log.sp2ion[sp]
    self.rr,self.pp,self.nr = ao_log.rr,ao_log.pp,ao_log.nr
    self.interp_rr = log_interp_c(self.rr)
    self.interp_pp = log_interp_c(self.pp)
    
    self.mu2j = ao_log.sp_mu2j[sp]
    self.nmult= len(self.mu2j)
    self.mu2s = ao_log.sp_mu2s[sp]
    self.norbs= self.mu2s[-1]

    self.mu2ff = ao_log.psi_log[sp]
    self.mu2ff_rl = ao_log.psi_log_rl[sp]    
    self.mu2rcut = ao_log.sp_mu2rcut[sp]
    self.rcut = np.amax(self.mu2rcut)
    self.charge = ao_log.sp2charge[sp] 
開發者ID:pyscf,項目名稱:pyscf,代碼行數:19,代碼來源:m_ion_log.py

示例6: coords2sort_order

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import amax [as 別名]
def coords2sort_order(a2c):
  """ Delivers a list of atom indices which generates a near-diagonal overlap for a given set of atom coordinates """
  na  = a2c.shape[0]
  aa2d = squareform(pdist(a2c))
  mxd = np.amax(aa2d)+1.0
  a = 0
  lsa = []
  for ia in range(na):
    lsa.append(a)
    asrt = np.argsort(aa2d[a])
    for ja in range(1,na):
      b = asrt[ja]
      if b not in lsa: break
    aa2d[a,b] = aa2d[b,a] = mxd
    a = b
  return np.array(lsa) 
開發者ID:pyscf,項目名稱:pyscf,代碼行數:18,代碼來源:coords2sort_order.py

示例7: test_gw

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import amax [as 別名]
def test_gw(self):
    """ This is GW """
    mol = gto.M(verbose=0, atom='''Ag 0 0 -0.3707; Ag 0 0 0.3707''', basis = 'cc-pvdz-pp',)
    gto_mf = scf.RHF(mol)#.density_fit()
    gto_mf.kernel()
    #print('gto_mf.mo_energy:', gto_mf.mo_energy)
    s = nao(mf=gto_mf, gto=mol, verbosity=0)
    oref = s.overlap_coo().toarray()
    #print('s.norbs:', s.norbs, oref.sum())

    pb = prod_basis(nao=s, algorithm='fp')
    pab2v = pb.get_ac_vertex_array()
    mom0,mom1=pb.comp_moments()
    orec = np.einsum('p,pab->ab', mom0, pab2v)
    self.assertTrue(np.allclose(orec,oref, atol=1e-3), \
      "{} {}".format(abs(orec-oref).sum()/oref.size, np.amax(abs(orec-oref)))) 
開發者ID:pyscf,項目名稱:pyscf,代碼行數:18,代碼來源:test_0092_ag2_ae.py

示例8: spatial_heatmap

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import amax [as 別名]
def spatial_heatmap(array, path, title=None, color="Greens", figformat="png"):
    """Taking channel information and creating post run channel activity plots."""
    logging.info("Nanoplotter: Creating heatmap of reads per channel using {} reads."
                 .format(array.size))
    activity_map = Plot(
        path=path + "." + figformat,
        title="Number of reads generated per channel")
    layout = make_layout(maxval=np.amax(array))
    valueCounts = pd.value_counts(pd.Series(array))
    for entry in valueCounts.keys():
        layout.template[np.where(layout.structure == entry)] = valueCounts[entry]
    plt.figure()
    ax = sns.heatmap(
        data=pd.DataFrame(layout.template, index=layout.yticks, columns=layout.xticks),
        xticklabels="auto",
        yticklabels="auto",
        square=True,
        cbar_kws={"orientation": "horizontal"},
        cmap=color,
        linewidths=0.20)
    ax.set_title(title or activity_map.title)
    activity_map.fig = ax.get_figure()
    activity_map.save(format=figformat)
    plt.close("all")
    return [activity_map] 
開發者ID:wdecoster,項目名稱:NanoPlot,代碼行數:27,代碼來源:spatial_heatmap.py

示例9: optimally_reblocked

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import amax [as 別名]
def optimally_reblocked(data):
    """
        Find optimal reblocking of input data. Takes in pandas
        DataFrame of raw data to reblock, returns DataFrame
        of reblocked data.
    """
    opt = opt_block(data)
    n_reblock = int(np.amax(opt))
    rb_data = reblock_by2(data, n_reblock)
    serr = rb_data.sem(axis=0)
    d = {
        "mean": rb_data.mean(axis=0),
        "standard error": serr,
        "standard error error": serr / np.sqrt(2 * (len(rb_data) - 1)),
        "reblocks": n_reblock,
    }
    return pd.DataFrame(d) 
開發者ID:WagnerGroup,項目名稱:pyqmc,代碼行數:19,代碼來源:reblock.py

示例10: prune_non_overlapping_masks

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import amax [as 別名]
def prune_non_overlapping_masks(box_mask_list1, box_mask_list2, minoverlap=0.0):
  """Prunes the boxes in list1 that overlap less than thresh with list2.

  For each mask in box_mask_list1, we want its IOA to be more than minoverlap
  with at least one of the masks in box_mask_list2. If it does not, we remove
  it. If the masks are not full size image, we do the pruning based on boxes.

  Args:
    box_mask_list1: np_box_mask_list.BoxMaskList holding N boxes and masks.
    box_mask_list2: np_box_mask_list.BoxMaskList holding M boxes and masks.
    minoverlap: Minimum required overlap between boxes, to count them as
                overlapping.

  Returns:
    A pruned box_mask_list with size [N', 4].
  """
  intersection_over_area = ioa(box_mask_list2, box_mask_list1)  # [M, N] tensor
  intersection_over_area = np.amax(intersection_over_area, axis=0)  # [N] tensor
  keep_bool = np.greater_equal(intersection_over_area, np.array(minoverlap))
  keep_inds = np.nonzero(keep_bool)[0]
  new_box_mask_list1 = gather(box_mask_list1, keep_inds)
  return new_box_mask_list1 
開發者ID:ahmetozlu,項目名稱:vehicle_counting_tensorflow,代碼行數:24,代碼來源:np_box_mask_list_ops.py

示例11: train

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import amax [as 別名]
def train(self, batch_size=32):
            # Train using replay experience
            minibatch = random.sample(self.memory, batch_size)
            for memory in minibatch:
                state, action, reward, state_next, done = memory
                # Build Q target:
                # -> Qtarget[!action] = Q[!action]
                #    Qtarget[action] = reward + gamma * max[a'](Q_next(state_next))
                Qtarget = self.model.predict(state)
                dQ = reward
                if not done:
                    dQ += self.gamma * np.amax(self.model.predict(state_next)[0])
                Qtarget[0][action] = dQ
                self.model.fit(state, Qtarget, epochs=1, verbose=0)

            # Decary exploration after training
            if self.epsilon > self.epsilon_min:
                self.epsilon *= self.epsilon_decay 
開發者ID:ankonzoid,項目名稱:LearningX,代碼行數:20,代碼來源:cartpole.py

示例12: guess_normal

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import amax [as 別名]
def guess_normal(universe, group):
    """
    Guess the normal of a liquid slab

    """
    universe.atoms.pack_into_box()
    dim = universe.coord.dimensions

    delta = []
    for direction in range(0, 3):
        histo, _ = np.histogram(
            group.positions[:, direction],
            bins=5,
            range=(0, dim[direction]),
            density=True)
        max_val = np.amax(histo)
        min_val = np.amin(histo)
        delta.append(np.sqrt((max_val - min_val)**2))

    if np.max(delta) / np.min(delta) < 5.0:
        print("Warning: the result of the automatic normal detection (",
              np.argmax(delta), ") is not reliable")
    return np.argmax(delta) 
開發者ID:Marcello-Sega,項目名稱:pytim,代碼行數:25,代碼來源:utilities.py

示例13: input_fn

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import amax [as 別名]
def input_fn(df):
    """Format the downloaded data."""
    # Creates a dictionary mapping from each continuous feature column name (k)
    # to the values of that column stored in a constant Tensor.
    continuous_cols = [df[k].values for k in CONTINUOUS_COLUMNS]
    X_con = np.stack(continuous_cols).astype(np.float32).T

    # Standardise
    X_con -= X_con.mean(axis=0)
    X_con /= X_con.std(axis=0)

    # Creates a dictionary mapping from each categorical feature column name
    categ_cols = [np.where(pd.get_dummies(df[k]).values)[1][:, np.newaxis]
                  for k in CATEGORICAL_COLUMNS]
    n_values = [np.amax(c) + 1 for c in categ_cols]
    X_cat = np.concatenate(categ_cols, axis=1).astype(np.int32)

    # Converts the label column into a constant Tensor.
    label = df[LABEL_COLUMN].values[:, np.newaxis]

    # Returns the feature columns and the label.
    return X_con, X_cat, n_values, label 
開發者ID:gradientinstitute,項目名稱:aboleth,代碼行數:24,代碼來源:multi_input.py

示例14: refine_room_region

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import amax [as 別名]
def refine_room_region(cw_mask, rm_ind):
	label_rm, num_label = ndimage.label((1-cw_mask))
	new_rm_ind = np.zeros(rm_ind.shape)
	for j in xrange(1, num_label+1):  
		mask = (label_rm == j).astype(np.uint8)
		ys, xs = np.where(mask!=0)
		area = (np.amax(xs)-np.amin(xs))*(np.amax(ys)-np.amin(ys))
		if area < 100:
			continue
		else:
			room_types, type_counts = np.unique(mask*rm_ind, return_counts=True)
			if len(room_types) > 1:
				room_types = room_types[1:] # ignore background type which is zero
				type_counts = type_counts[1:] # ignore background count
			new_rm_ind += mask*room_types[np.argmax(type_counts)]

	return new_rm_ind 
開發者ID:zlzeng,項目名稱:DeepFloorplan,代碼行數:19,代碼來源:util.py

示例15: get_heatmap

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import amax [as 別名]
def get_heatmap(self, target_size):
        heatmap = np.zeros((CocoMetadata.__coco_parts, self.height, self.width), dtype=np.float32)

        for joints in self.joint_list:
            for idx, point in enumerate(joints):
                if point[0] < 0 or point[1] < 0:
                    continue
                CocoMetadata.put_heatmap(heatmap, idx, point, self.sigma)

        heatmap = heatmap.transpose((1, 2, 0))

        # background
        heatmap[:, :, -1] = np.clip(1 - np.amax(heatmap, axis=2), 0.0, 1.0)

        if target_size:
            heatmap = cv2.resize(heatmap, target_size, interpolation=cv2.INTER_AREA)

        return heatmap.astype(np.float16) 
開發者ID:SrikanthVelpuri,項目名稱:tf-pose,代碼行數:20,代碼來源:pose_dataset.py


注:本文中的numpy.amax方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。