本文整理匯總了Python中numpy.alltrue方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.alltrue方法的具體用法?Python numpy.alltrue怎麽用?Python numpy.alltrue使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類numpy
的用法示例。
在下文中一共展示了numpy.alltrue方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_emg_eventrelated
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import alltrue [as 別名]
def test_emg_eventrelated():
emg = nk.emg_simulate(duration=20, sampling_rate=1000, burst_number=3)
emg_signals, info = nk.emg_process(emg, sampling_rate=1000)
epochs = nk.epochs_create(
emg_signals, events=[3000, 6000, 9000], sampling_rate=1000, epochs_start=-0.1, epochs_end=1.9
)
emg_eventrelated = nk.emg_eventrelated(epochs)
# Test amplitude features
no_activation = np.where(emg_eventrelated["EMG_Activation"] == 0)[0][0]
assert int(pd.DataFrame(emg_eventrelated.values[no_activation]).isna().sum()) == 4
assert np.alltrue(
np.nansum(np.array(emg_eventrelated["EMG_Amplitude_Mean"]))
< np.nansum(np.array(emg_eventrelated["EMG_Amplitude_Max"]))
)
assert len(emg_eventrelated["Label"]) == 3
示例2: test_rsp_eventrelated
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import alltrue [as 別名]
def test_rsp_eventrelated():
rsp, info = nk.rsp_process(nk.rsp_simulate(duration=30, random_state=42))
epochs = nk.epochs_create(rsp, events=[5000, 10000, 15000], epochs_start=-0.1, epochs_end=1.9)
rsp_eventrelated = nk.rsp_eventrelated(epochs)
# Test rate features
assert np.alltrue(np.array(rsp_eventrelated["RSP_Rate_Min"]) < np.array(rsp_eventrelated["RSP_Rate_Mean"]))
assert np.alltrue(np.array(rsp_eventrelated["RSP_Rate_Mean"]) < np.array(rsp_eventrelated["RSP_Rate_Max"]))
# Test amplitude features
assert np.alltrue(
np.array(rsp_eventrelated["RSP_Amplitude_Min"]) < np.array(rsp_eventrelated["RSP_Amplitude_Mean"])
)
assert np.alltrue(
np.array(rsp_eventrelated["RSP_Amplitude_Mean"]) < np.array(rsp_eventrelated["RSP_Amplitude_Max"])
)
assert len(rsp_eventrelated["Label"]) == 3
示例3: run_prequential_supervised
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import alltrue [as 別名]
def run_prequential_supervised(stream, learner, max_samples, n_wait, y_expected=None):
stream.restart()
y_pred = np.zeros(max_samples // n_wait, dtype=np.int)
y_true = np.zeros(max_samples // n_wait, dtype=np.int)
j = 0
for i in range(max_samples):
X, y = stream.next_sample()
# Test every n samples
if i % n_wait == 0:
y_pred[j] = int(learner.predict(X)[0])
y_true[j] = (y[0])
j += 1
learner.partial_fit(X, y, classes=stream.target_values)
assert type(learner.predict(X)) == np.ndarray
if y_expected is not None:
assert np.alltrue(y_pred == y_expected)
示例4: test_missing_values_cleaner
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import alltrue [as 別名]
def test_missing_values_cleaner(test_path):
test_file = os.path.join(test_path, 'data_nan.npy')
X_nan = np.load(test_file)
X = copy(X_nan)
cleaner = MissingValuesCleaner(missing_value=np.nan, strategy='zero')
X_complete = cleaner.transform(X)
test_file = os.path.join(test_path, 'data_complete.npy')
X_expected = np.load(test_file)
assert np.alltrue(X_complete == X_expected)
expected_info = "MissingValuesCleaner(missing_value=[nan], new_value=1, strategy='zero',\n" \
" window_size=200)"
assert cleaner.get_info() == expected_info
assert cleaner._estimator_type == 'transform'
示例5: test_windowed_standard_scaler
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import alltrue [as 別名]
def test_windowed_standard_scaler(test_path):
X_orig = np.array([[1., 2., 3., 4.], [2., 3., 4., 5.], [3., 4., 5., 6.], [5., 4., 3., 2.], [4., 3., 2., 1.], [0., 1., 0., 1.], [3., 2., 3., 4.],
[1., 2., 3., 4.], [2., 3., 4., 5.], [3., 4., 5., 6.], [5., 4., 3., 2.], [4., 3., 2., 1.], [0., 1., 0., 1.], [3., 2., 3., 4.],
[1., 2., 3., 4.], [2., 3., 4., 5.], [3., 4., 5., 6.], [5., 4., 3., 2.], [4., 3., 2., 1.], [0., 1., 0., 1.], [3., 2., 3., 4.],
[1., 2., 3., 4.], [2., 3., 4., 5.], [3., 4., 5., 6.], [5., 4., 3., 2.], [4., 3., 2., 1.], [0., 1., 0., 1.], [3., 2., 3., 4.],
[1., 2., 3., 4.], [2., 3., 4., 5.], [3., 4., 5., 6.], [5., 4., 3., 2.], [4., 3., 2., 1.], [0., 1., 0., 1.], [3., 2., 3., 4.],
[1., 2., 3., 4.], [2., 3., 4., 5.], [3., 4., 5., 6.], [5., 4., 3., 2.], [4., 3., 2., 1.], [0., 1., 0., 1.], [3., 2., 3., 4.],
[1., 2., 3., 4.], [2., 3., 4., 5.], [3., 4., 5., 6.], [5., 4., 3., 2.], [4., 3., 2., 1.], [0., 1., 0., 1.], [3., 2., 3., 4.],
[1., 2., 3., 4.], [2., 3., 4., 5.], [3., 4., 5., 6.], [5., 4., 3., 2.], [4., 3., 2., 1.], [0., 1., 0., 1.], [3., 2., 3., 4.],
[1., 2., 3., 4.], [2., 3., 4., 5.], [3., 4., 5., 6.], [5., 4., 3., 2.], [4., 3., 2., 1.], [0., 1., 0., 1.], [3., 2., 3., 4.],
[1., 2., 3., 4.], [2., 3., 4., 5.], [3., 4., 5., 6.], [5., 4., 3., 2.], [4., 3., 2., 1.], [0., 1., 0., 1.], [3., 2., 3., 4.],
[1., 2., 3., 4.], [2., 3., 4., 5.], [3., 4., 5., 6.], [5., 4., 3., 2.], [4., 3., 2., 1.], [0., 1., 0., 1.], [3., 2., 3., 4.]])
X = copy(X_orig)
cleaner = WindowedStandardScaler(window_size=20)
X_complete = cleaner.transform(X)
test_file = os.path.join(test_path, 'std_scaler.npy')
X_expected = np.load(test_file)
assert np.alltrue(X_complete == X_expected)
示例6: test_windowed_minmax_scaler
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import alltrue [as 別名]
def test_windowed_minmax_scaler(test_path):
X_orig = np.array([[1., 2., 3., 4.], [2., 3., 4., 5.], [3., 4., 5., 6.], [5., 4., 3., 2.], [4., 3., 2., 1.], [0., 1., 0., 1.], [3., 2., 3., 4.],
[1., 2., 3., 4.], [2., 3., 4., 5.], [3., 4., 5., 6.], [5., 4., 3., 2.], [4., 3., 2., 1.], [0., 1., 0., 1.], [3., 2., 3., 4.],
[1., 2., 3., 4.], [2., 3., 4., 5.], [3., 4., 5., 6.], [5., 4., 3., 2.], [4., 3., 2., 1.], [0., 1., 0., 1.], [3., 2., 3., 4.],
[1., 2., 3., 4.], [2., 3., 4., 5.], [3., 4., 5., 6.], [5., 4., 3., 2.], [4., 3., 2., 1.], [0., 1., 0., 1.], [3., 2., 3., 4.],
[1., 2., 3., 4.], [2., 3., 4., 5.], [3., 4., 5., 6.], [5., 4., 3., 2.], [4., 3., 2., 1.], [0., 1., 0., 1.], [3., 2., 3., 4.],
[1., 2., 3., 4.], [2., 3., 4., 5.], [3., 4., 5., 6.], [5., 4., 3., 2.], [4., 3., 2., 1.], [0., 1., 0., 1.], [3., 2., 3., 4.],
[1., 2., 3., 4.], [2., 3., 4., 5.], [3., 4., 5., 6.], [5., 4., 3., 2.], [4., 3., 2., 1.], [0., 1., 0., 1.], [3., 2., 3., 4.],
[1., 2., 3., 4.], [2., 3., 4., 5.], [3., 4., 5., 6.], [5., 4., 3., 2.], [4., 3., 2., 1.], [0., 1., 0., 1.], [3., 2., 3., 4.],
[1., 2., 3., 4.], [2., 3., 4., 5.], [3., 4., 5., 6.], [5., 4., 3., 2.], [4., 3., 2., 1.], [0., 1., 0., 1.], [3., 2., 3., 4.],
[1., 2., 3., 4.], [2., 3., 4., 5.], [3., 4., 5., 6.], [5., 4., 3., 2.], [4., 3., 2., 1.], [0., 1., 0., 1.], [3., 2., 3., 4.],
[1., 2., 3., 4.], [2., 3., 4., 5.], [3., 4., 5., 6.], [5., 4., 3., 2.], [4., 3., 2., 1.], [0., 1., 0., 1.], [3., 2., 3., 4.]])
X = copy(X_orig)
cleaner = WindowedMinmaxScaler(window_size=20)
X_complete = cleaner.transform(X)
test_file = os.path.join(test_path, 'minmax_scaler.npy')
X_expected = np.load(test_file)
assert np.alltrue(X_complete == X_expected)
示例7: test_regression_measurements
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import alltrue [as 別名]
def test_regression_measurements():
y_true = np.sin(range(100))
y_pred = np.sin(range(100)) + .05
measurements = RegressionMeasurements()
for i in range(len(y_true)):
measurements.add_result(y_true[i], y_pred[i])
expected_mse = 0.0025000000000000022
assert np.isclose(expected_mse, measurements.get_mean_square_error())
expected_ae = 0.049999999999999906
assert np.isclose(expected_ae, measurements.get_average_error())
expected_info = 'RegressionMeasurements: - sample_count: 100 - mean_square_error: 0.002500 ' \
'- mean_absolute_error: 0.050000'
assert expected_info == measurements.get_info()
expected_last = (-0.9992068341863537, -0.9492068341863537)
assert np.alltrue(expected_last == measurements.get_last())
measurements.reset()
assert measurements.sample_count == 0
示例8: test_agrawal_drift
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import alltrue [as 別名]
def test_agrawal_drift(test_path):
stream = AGRAWALGenerator(random_state=1)
X, y = stream.next_sample(10)
stream.generate_drift()
X_drift, y_drift = stream.next_sample(10)
# Load test data corresponding to first 10 instances
test_file = os.path.join(test_path, 'agrawal_stream_drift.npz')
data = np.load(test_file)
X_expected = data['X']
y_expected = data['y']
X = np.concatenate((X, X_drift))
y = np.concatenate((y, y_drift))
assert np.alltrue(X == X_expected)
assert np.alltrue(y == y_expected)
示例9: test_ecg_eventrelated
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import alltrue [as 別名]
def test_ecg_eventrelated():
ecg, info = nk.ecg_process(nk.ecg_simulate(duration=20))
epochs = nk.epochs_create(ecg, events=[5000, 10000, 15000], epochs_start=-0.1, epochs_end=1.9)
ecg_eventrelated = nk.ecg_eventrelated(epochs)
# Test rate features
assert np.alltrue(np.array(ecg_eventrelated["ECG_Rate_Min"]) < np.array(ecg_eventrelated["ECG_Rate_Mean"]))
assert np.alltrue(np.array(ecg_eventrelated["ECG_Rate_Mean"]) < np.array(ecg_eventrelated["ECG_Rate_Max"]))
assert len(ecg_eventrelated["Label"]) == 3
示例10: add_channels
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import alltrue [as 別名]
def add_channels(self, channels):
if self.channels is None:
self.channels = channels
else:
assert np.alltrue(channels == self.channels)
示例11: test_nd
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import alltrue [as 別名]
def test_nd(self):
y1 = [[0, 0, 1], [0, 1, 1], [1, 1, 1]]
assert_(not np.all(y1))
assert_array_equal(np.alltrue(y1, axis=0), [0, 0, 1])
assert_array_equal(np.alltrue(y1, axis=1), [0, 0, 1])
示例12: fail_if_array_equal
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import alltrue [as 別名]
def fail_if_array_equal(x, y, err_msg='', verbose=True):
"""
Raises an assertion error if two masked arrays are not equal elementwise.
"""
def compare(x, y):
return (not np.alltrue(approx(x, y)))
assert_array_compare(compare, x, y, err_msg=err_msg, verbose=verbose,
header='Arrays are not equal')
示例13: test_values
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import alltrue [as 別名]
def test_values(self):
expected = np.array(list(self.makegen()))
a = np.fromiter(self.makegen(), int)
a20 = np.fromiter(self.makegen(), int, 20)
assert_(np.alltrue(a == expected, axis=0))
assert_(np.alltrue(a20 == expected[:20], axis=0))
示例14: test_method_args
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import alltrue [as 別名]
def test_method_args(self):
# Make sure methods and functions have same default axis
# keyword and arguments
funcs1 = ['argmax', 'argmin', 'sum', ('product', 'prod'),
('sometrue', 'any'),
('alltrue', 'all'), 'cumsum', ('cumproduct', 'cumprod'),
'ptp', 'cumprod', 'prod', 'std', 'var', 'mean',
'round', 'min', 'max', 'argsort', 'sort']
funcs2 = ['compress', 'take', 'repeat']
for func in funcs1:
arr = np.random.rand(8, 7)
arr2 = arr.copy()
if isinstance(func, tuple):
func_meth = func[1]
func = func[0]
else:
func_meth = func
res1 = getattr(arr, func_meth)()
res2 = getattr(np, func)(arr2)
if res1 is None:
res1 = arr
if res1.dtype.kind in 'uib':
assert_((res1 == res2).all(), func)
else:
assert_(abs(res1-res2).max() < 1e-8, func)
for func in funcs2:
arr1 = np.random.rand(8, 7)
arr2 = np.random.rand(8, 7)
res1 = None
if func == 'compress':
arr1 = arr1.ravel()
res1 = getattr(arr2, func)(arr1)
else:
arr2 = (15*arr2).astype(int).ravel()
if res1 is None:
res1 = getattr(arr1, func)(arr2)
res2 = getattr(np, func)(arr1, arr2)
assert_(abs(res1-res2).max() < 1e-8, func)
示例15: test_fromiter_bytes
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import alltrue [as 別名]
def test_fromiter_bytes(self):
# Ticket #1058
a = np.fromiter(list(range(10)), dtype='b')
b = np.fromiter(list(range(10)), dtype='B')
assert_(np.alltrue(a == np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])))
assert_(np.alltrue(b == np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])))