本文整理匯總了Python中numpy.add方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.add方法的具體用法?Python numpy.add怎麽用?Python numpy.add使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類numpy
的用法示例。
在下文中一共展示了numpy.add方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: BuildAdjacency
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import add [as 別名]
def BuildAdjacency(CMat, K):
CMat = CMat.astype(float)
CKSym = None
N, _ = CMat.shape
CAbs = np.absolute(CMat).astype(float)
for i in range(0, N):
c = CAbs[:, i]
PInd = np.flip(np.argsort(c), 0)
CAbs[:, i] = CAbs[:, i] / float(np.absolute(c[PInd[0]]))
CSym = np.add(CAbs, CAbs.T).astype(float)
if K != 0:
Ind = np.flip(np.argsort(CSym, axis=0), 0)
CK = np.zeros([N, N]).astype(float)
for i in range(0, N):
for j in range(0, K):
CK[Ind[j, i], i] = CSym[Ind[j, i], i] / float(np.absolute(CSym[Ind[0, i], i]))
CKSym = np.add(CK, CK.T)
else:
CKSym = CSym
return CKSym
示例2: geometric_brownian_motion_jump_diffusion_log_returns
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import add [as 別名]
def geometric_brownian_motion_jump_diffusion_log_returns(params: ModelParameters):
"""
Constructs combines a geometric brownian motion process
(log returns) with a jump diffusion process (log returns) to produce
a sequence of gbm jump returns.
Arguments:
params : ModelParameters
The parameters for the stochastic model.
Returns:
A GBM process with jumps in it
"""
jump_diffusion = jump_diffusion_process(params)
geometric_brownian_motion = geometric_brownian_motion_log_returns(params)
return np.add(jump_diffusion, geometric_brownian_motion)
示例3: test_multi_step_adding
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import add [as 別名]
def test_multi_step_adding():
a1 = Stream([1, 2, 3]).rename("a1")
a2 = Stream([4, 5, 6]).rename("a2")
t1 = BinOp(np.add)(a1, a2).rename("t1")
t2 = BinOp(np.add)(t1, a2).rename("t2")
feed = DataFeed([a1, a2, t1, t2])
output = feed.next()
assert output == {'a1': 1, 'a2': 4, 't1': 5, 't2': 9}
feed = DataFeed([a1, a2, t2])
output = feed.next()
assert output == {'a1': 1, 'a2': 4, 't2': 9}
示例4: _rsp_findpeaks_outliers
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import add [as 別名]
def _rsp_findpeaks_outliers(rsp_cleaned, extrema, amplitude_min=0.3):
# Only consider those extrema that have a minimum vertical distance to
# their direct neighbor, i.e., define outliers in absolute amplitude
# difference between neighboring extrema.
vertical_diff = np.abs(np.diff(rsp_cleaned[extrema]))
median_diff = np.median(vertical_diff)
min_diff = np.where(vertical_diff > (median_diff * amplitude_min))[0]
extrema = extrema[min_diff]
# Make sure that the alternation of peaks and troughs is unbroken. If
# alternation of sign in extdiffs is broken, remove the extrema that
# cause the breaks.
amplitudes = rsp_cleaned[extrema]
extdiffs = np.sign(np.diff(amplitudes))
extdiffs = np.add(extdiffs[0:-1], extdiffs[1:])
removeext = np.where(extdiffs != 0)[0] + 1
extrema = np.delete(extrema, removeext)
amplitudes = np.delete(amplitudes, removeext)
return extrema, amplitudes
示例5: build_generator
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import add [as 別名]
def build_generator(self):
model = Sequential()
model.add(Dense(128 * 7 * 7, activation="relu", input_dim=self.latent_dim))
model.add(Reshape((7, 7, 128)))
model.add(BatchNormalization(momentum=0.8))
model.add(UpSampling2D())
model.add(Conv2D(128, kernel_size=3, padding="same"))
model.add(Activation("relu"))
model.add(BatchNormalization(momentum=0.8))
model.add(UpSampling2D())
model.add(Conv2D(64, kernel_size=3, padding="same"))
model.add(Activation("relu"))
model.add(BatchNormalization(momentum=0.8))
model.add(Conv2D(1, kernel_size=3, padding="same"))
model.add(Activation("tanh"))
model.summary()
noise = Input(shape=(self.latent_dim,))
img = model(noise)
return Model(noise, img)
示例6: build_discriminator
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import add [as 別名]
def build_discriminator(self):
model = Sequential()
model.add(Conv2D(64, kernel_size=3, strides=2, input_shape=self.missing_shape, padding="same"))
model.add(LeakyReLU(alpha=0.2))
model.add(BatchNormalization(momentum=0.8))
model.add(Conv2D(128, kernel_size=3, strides=2, padding="same"))
model.add(LeakyReLU(alpha=0.2))
model.add(BatchNormalization(momentum=0.8))
model.add(Conv2D(256, kernel_size=3, padding="same"))
model.add(LeakyReLU(alpha=0.2))
model.add(BatchNormalization(momentum=0.8))
model.add(Flatten())
model.add(Dense(1, activation='sigmoid'))
model.summary()
img = Input(shape=self.missing_shape)
validity = model(img)
return Model(img, validity)
示例7: build_discriminator
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import add [as 別名]
def build_discriminator(self):
img = Input(shape=self.img_shape)
model = Sequential()
model.add(Conv2D(64, kernel_size=4, strides=2, padding='same', input_shape=self.img_shape))
model.add(LeakyReLU(alpha=0.8))
model.add(Conv2D(128, kernel_size=4, strides=2, padding='same'))
model.add(LeakyReLU(alpha=0.2))
model.add(InstanceNormalization())
model.add(Conv2D(256, kernel_size=4, strides=2, padding='same'))
model.add(LeakyReLU(alpha=0.2))
model.add(InstanceNormalization())
model.summary()
img = Input(shape=self.img_shape)
features = model(img)
validity = Conv2D(1, kernel_size=4, strides=1, padding='same')(features)
label = Flatten()(features)
label = Dense(self.num_classes+1, activation="softmax")(label)
return Model(img, [validity, label])
示例8: build_encoder
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import add [as 別名]
def build_encoder(self):
model = Sequential()
model.add(Flatten(input_shape=self.img_shape))
model.add(Dense(512))
model.add(LeakyReLU(alpha=0.2))
model.add(BatchNormalization(momentum=0.8))
model.add(Dense(512))
model.add(LeakyReLU(alpha=0.2))
model.add(BatchNormalization(momentum=0.8))
model.add(Dense(self.latent_dim))
model.summary()
img = Input(shape=self.img_shape)
z = model(img)
return Model(img, z)
示例9: build_generator
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import add [as 別名]
def build_generator(self):
model = Sequential()
model.add(Dense(512, input_dim=self.latent_dim))
model.add(LeakyReLU(alpha=0.2))
model.add(BatchNormalization(momentum=0.8))
model.add(Dense(512))
model.add(LeakyReLU(alpha=0.2))
model.add(BatchNormalization(momentum=0.8))
model.add(Dense(np.prod(self.img_shape), activation='tanh'))
model.add(Reshape(self.img_shape))
model.summary()
z = Input(shape=(self.latent_dim,))
gen_img = model(z)
return Model(z, gen_img)
示例10: build_generator
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import add [as 別名]
def build_generator(self):
model = Sequential()
model.add(Dense(128 * 7 * 7, activation="relu", input_dim=self.latent_dim))
model.add(Reshape((7, 7, 128)))
model.add(BatchNormalization(momentum=0.8))
model.add(UpSampling2D())
model.add(Conv2D(128, kernel_size=3, padding="same"))
model.add(Activation("relu"))
model.add(BatchNormalization(momentum=0.8))
model.add(UpSampling2D())
model.add(Conv2D(64, kernel_size=3, padding="same"))
model.add(Activation("relu"))
model.add(BatchNormalization(momentum=0.8))
model.add(Conv2D(self.channels, kernel_size=3, padding='same'))
model.add(Activation("tanh"))
gen_input = Input(shape=(self.latent_dim,))
img = model(gen_input)
model.summary()
return Model(gen_input, img)
示例11: build_generator
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import add [as 別名]
def build_generator(self):
model = Sequential()
model.add(Dense(128 * 7 * 7, activation="relu", input_dim=self.latent_dim))
model.add(Reshape((7, 7, 128)))
model.add(UpSampling2D())
model.add(Conv2D(128, kernel_size=4, padding="same"))
model.add(BatchNormalization(momentum=0.8))
model.add(Activation("relu"))
model.add(UpSampling2D())
model.add(Conv2D(64, kernel_size=4, padding="same"))
model.add(BatchNormalization(momentum=0.8))
model.add(Activation("relu"))
model.add(Conv2D(self.channels, kernel_size=4, padding="same"))
model.add(Activation("tanh"))
model.summary()
noise = Input(shape=(self.latent_dim,))
img = model(noise)
return Model(noise, img)
示例12: build_generator
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import add [as 別名]
def build_generator(self):
model = Sequential()
model.add(Dense(256, input_dim=self.latent_dim))
model.add(LeakyReLU(alpha=0.2))
model.add(BatchNormalization(momentum=0.8))
model.add(Dense(512))
model.add(LeakyReLU(alpha=0.2))
model.add(BatchNormalization(momentum=0.8))
model.add(Dense(1024))
model.add(LeakyReLU(alpha=0.2))
model.add(BatchNormalization(momentum=0.8))
model.add(Dense(np.prod(self.img_shape), activation='tanh'))
model.add(Reshape(self.img_shape))
model.summary()
noise = Input(shape=(self.latent_dim,))
img = model(noise)
return Model(noise, img)
示例13: build_discriminator
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import add [as 別名]
def build_discriminator(self):
model = Sequential()
model.add(Flatten(input_shape=self.img_shape))
model.add(Dense(512))
model.add(LeakyReLU(alpha=0.2))
model.add(Dense(256))
model.add(LeakyReLU(alpha=0.2))
# (!!!) No softmax
model.add(Dense(1))
model.summary()
img = Input(shape=self.img_shape)
validity = model(img)
return Model(img, validity)
示例14: build_discriminators
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import add [as 別名]
def build_discriminators(self):
img1 = Input(shape=self.img_shape)
img2 = Input(shape=self.img_shape)
# Shared discriminator layers
model = Sequential()
model.add(Flatten(input_shape=self.img_shape))
model.add(Dense(512))
model.add(LeakyReLU(alpha=0.2))
model.add(Dense(256))
model.add(LeakyReLU(alpha=0.2))
img1_embedding = model(img1)
img2_embedding = model(img2)
# Discriminator 1
validity1 = Dense(1, activation='sigmoid')(img1_embedding)
# Discriminator 2
validity2 = Dense(1, activation='sigmoid')(img2_embedding)
return Model(img1, validity1), Model(img2, validity2)
示例15: build_generator
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import add [as 別名]
def build_generator(self):
X = Input(shape=(self.img_dim,))
model = Sequential()
model.add(Dense(256, input_dim=self.img_dim))
model.add(LeakyReLU(alpha=0.2))
model.add(BatchNormalization(momentum=0.8))
model.add(Dropout(0.4))
model.add(Dense(512))
model.add(LeakyReLU(alpha=0.2))
model.add(BatchNormalization(momentum=0.8))
model.add(Dropout(0.4))
model.add(Dense(1024))
model.add(LeakyReLU(alpha=0.2))
model.add(BatchNormalization(momentum=0.8))
model.add(Dropout(0.4))
model.add(Dense(self.img_dim, activation='tanh'))
X_translated = model(X)
return Model(X, X_translated)