本文整理匯總了Python中numpy.abs方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.abs方法的具體用法?Python numpy.abs怎麽用?Python numpy.abs使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類numpy
的用法示例。
在下文中一共展示了numpy.abs方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _project_im_rois
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import abs [as 別名]
def _project_im_rois(im_rois, scales):
"""Project image RoIs into the image pyramid built by _get_image_blob.
Arguments:
im_rois (ndarray): R x 4 matrix of RoIs in original image coordinates
scales (list): scale factors as returned by _get_image_blob
Returns:
rois (ndarray): R x 4 matrix of projected RoI coordinates
levels (list): image pyramid levels used by each projected RoI
"""
im_rois = im_rois.astype(np.float, copy=False)
if len(scales) > 1:
widths = im_rois[:, 2] - im_rois[:, 0] + 1
heights = im_rois[:, 3] - im_rois[:, 1] + 1
areas = widths * heights
scaled_areas = areas[:, np.newaxis] * (scales[np.newaxis, :] ** 2)
diff_areas = np.abs(scaled_areas - 224 * 224)
levels = diff_areas.argmin(axis=1)[:, np.newaxis]
else:
levels = np.zeros((im_rois.shape[0], 1), dtype=np.int)
rois = im_rois * scales[levels]
return rois, levels
開發者ID:Sunarker,項目名稱:Collaborative-Learning-for-Weakly-Supervised-Object-Detection,代碼行數:26,代碼來源:test.py
示例2: __init__
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import abs [as 別名]
def __init__(self, parallel, wave_len=254, wave_dif=64, buffer_size=5, loop_num=5, window=np.hanning(254)):
self.wave_len = wave_len
self.wave_dif = wave_dif
self.buffer_size = buffer_size
self.loop_num = loop_num
self.parallel = parallel
self.window = cp.array([window for _ in range(parallel)])
self.wave_buf = cp.zeros((parallel, wave_len+wave_dif), dtype=float)
self.overwrap_buf = cp.zeros((parallel, wave_dif*buffer_size+(wave_len-wave_dif)), dtype=float)
self.spectrum_buffer = cp.ones((parallel, self.buffer_size, self.wave_len), dtype=complex)
self.absolute_buffer = cp.ones((parallel, self.buffer_size, self.wave_len), dtype=complex)
self.phase = cp.zeros((parallel, self.wave_len), dtype=complex)
self.phase += cp.random.random((parallel, self.wave_len))-0.5 + cp.random.random((parallel, self.wave_len))*1j - 0.5j
self.phase[self.phase == 0] = 1
self.phase /= cp.abs(self.phase)
示例3: get_audio_data
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import abs [as 別名]
def get_audio_data(self):
frames = self.rec.get_frames()
result = [0] * self.bins
if len(frames) > 0:
# keeps only the last frame
current_frame = frames[-1]
# plots the time signal
# self.line_top.set_data(self.time_vect, current_frame)
# computes and plots the fft signal
fft_frame = np.fft.rfft(current_frame)
if self.auto_gain:
fft_frame /= np.abs(fft_frame).max()
else:
fft_frame *= (1 + self.gain) / 5000000.
fft_frame = np.abs(fft_frame)
if self.log_scale:
fft_frame = np.log10(np.add(1, np.multiply(10, fft_frame)))
result = [min(int(max(i, 0.) * 1023), 1023) for i in fft_frame][0:self.bins]
return result
示例4: main
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import abs [as 別名]
def main():
data_foler = "data"
wavs = [os.path.join(data_foler, file[:-4]) for file in os.listdir(data_foler) if file.endswith(".wav")]
outputs_lws = [file + ".lws.gen.wav" for file in wavs]
wavs = [audio.load_wav(wav_path + ".wav", hparams.sample_rate) for wav_path in wavs]
lws_processor = lws.lws(512, 128, mode="speech") # 512: window length; 128: window shift
i = 0
for x in wavs:
X = lws_processor.stft(x) # where x is a single-channel waveform
X0 = np.abs(X) # Magnitude spectrogram
print('{:6}: {:5.2f} dB'.format('Abs(X)', lws_processor.get_consistency(X0)))
X1 = lws_processor.run_lws(
X0) # reconstruction from magnitude (in general, one can reconstruct from an initial complex spectrogram)
print(X1.shape)
print('{:6}: {:5.2f} dB'.format('LWS', lws_processor.get_consistency(X1)))
print(X1.shape)
wav = lws_processor.istft(X1).astype(np.float32)
audio.save_wav(wav, outputs_lws[i])
i += 1
示例5: _extract
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import abs [as 別名]
def _extract(self, intervals, out, **kwargs):
def find_closest(ldm, interval, use_strand=True):
"""Uses
"""
# subset the positions to the appropriate strand
# and extract the positions
ldm_positions = ldm.loc[interval.chrom]
if use_strand and interval.strand != ".":
ldm_positions = ldm_positions.loc[interval.strand]
ldm_positions = ldm_positions.position.values
int_midpoint = (interval.end + interval.start) // 2
dist = (ldm_positions - 1) - int_midpoint # -1 for 0, 1 indexed positions
if use_strand and interval.strand == "-":
dist = - dist
return dist[np.argmin(np.abs(dist))]
out[:] = np.array([[find_closest(self.landmarks[ldm_name], interval, self.use_strand)
for ldm_name in self.columns]
for interval in intervals], dtype=float)
return out
示例6: __init__
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import abs [as 別名]
def __init__(self, wave_len=254, wave_dif=64, buffer_size=5, loop_num=5, window=np.hanning(254)):
self.wave_len = wave_len
self.wave_dif = wave_dif
self.buffer_size = buffer_size
self.loop_num = loop_num
self.window = window
self.wave_buf = np.zeros(wave_len+wave_dif, dtype=float)
self.overwrap_buf = np.zeros(wave_dif*buffer_size+(wave_len-wave_dif), dtype=float)
self.spectrum_buffer = np.ones((self.buffer_size, self.wave_len), dtype=complex)
self.absolute_buffer = np.ones((self.buffer_size, self.wave_len), dtype=complex)
self.phase = np.zeros(self.wave_len, dtype=complex)
self.phase += np.random.random(self.wave_len)-0.5 + np.random.random(self.wave_len)*1j - 0.5j
self.phase[self.phase == 0] = 1
self.phase /= np.abs(self.phase)
示例7: wave2input_image
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import abs [as 別名]
def wave2input_image(wave, window, pos=0, pad=0):
wave_image = np.hstack([wave[pos+i*sride:pos+(i+pad*2)*sride+dif].reshape(height+pad*2, sride) for i in range(256//sride)])[:,:254]
wave_image *= window
spectrum_image = np.fft.fft(wave_image, axis=1)
input_image = np.abs(spectrum_image[:,:128].reshape(1, height+pad*2, 128), dtype=np.float32)
np.clip(input_image, 1000, None, out=input_image)
np.log(input_image, out=input_image)
input_image += bias
input_image /= scale
if np.max(input_image) > 0.95:
print('input image max bigger than 0.95', np.max(input_image))
if np.min(input_image) < 0.05:
print('input image min smaller than 0.05', np.min(input_image))
return input_image
示例8: stft_magnitude
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import abs [as 別名]
def stft_magnitude(signal, fft_length,
hop_length=None,
window_length=None):
"""Calculate the short-time Fourier transform magnitude.
Args:
signal: 1D np.array of the input time-domain signal.
fft_length: Size of the FFT to apply.
hop_length: Advance (in samples) between each frame passed to FFT.
window_length: Length of each block of samples to pass to FFT.
Returns:
2D np.array where each row contains the magnitudes of the fft_length/2+1
unique values of the FFT for the corresponding frame of input samples.
"""
frames = frame(signal, window_length, hop_length)
# Apply frame window to each frame. We use a periodic Hann (cosine of period
# window_length) instead of the symmetric Hann of np.hanning (period
# window_length-1).
window = periodic_hann(window_length)
windowed_frames = frames * window
return np.abs(np.fft.rfft(windowed_frames, int(fft_length)))
# Mel spectrum constants and functions.
示例9: jacobian
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import abs [as 別名]
def jacobian(self, p, into=None):
# transpose to be 3 x 2 x n
p = np.transpose(np.reshape(p, (-1, 3, 2)), (1,2,0))
# First, get the two legs...
(dx_ab, dy_ab) = p[1] - p[0]
(dx_ac, dy_ac) = p[2] - p[0]
(dx_bc, dy_bc) = p[2] - p[1]
# now, the area is half the z-value of the cross-product...
sarea0 = 0.5 * (dx_ab*dy_ac - dx_ac*dy_ab)
# but we want to abs it
dsarea0 = np.sign(sarea0)
z = np.transpose([[-dy_bc,dx_bc], [dy_ac,-dx_ac], [-dy_ab,dx_ab]], (2,0,1))
z = times(0.5*dsarea0, z)
m = numel(p)
n = p.shape[2]
ii = (np.arange(n) * np.ones([6, n])).T.flatten()
z = sps.csr_matrix((z.flatten(), (ii, np.arange(len(ii)))), shape=(n, m))
return safe_into(into, z)
示例10: is_integer
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import abs [as 別名]
def is_integer(number, precision=10e-10):
"""
Check if number is convertible to integer.
:Parameters:
#. number (str, number): Input number.
#. precision (number): To avoid floating errors,
a precision should be given.
:Returns:
#. result (bool): True if convertible, False otherwise.
"""
if isinstance(number, (int, long)):
return True
try:
number = float(number)
except:
return False
else:
if np.abs(number-int(number)) < precision:
return True
else:
return False
示例11: update
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import abs [as 別名]
def update(self, labels, preds):
"""Updates the internal evaluation result.
Parameters
----------
labels : list of `NDArray`
The labels of the data.
preds : list of `NDArray`
Predicted values.
"""
labels, preds = check_label_shapes(labels, preds, True)
for label, pred in zip(labels, preds):
label = label.asnumpy()
pred = pred.asnumpy()
if len(label.shape) == 1:
label = label.reshape(label.shape[0], 1)
if len(pred.shape) == 1:
pred = pred.reshape(pred.shape[0], 1)
self.sum_metric += numpy.abs(label - pred).mean()
self.num_inst += 1 # numpy.prod(label.shape)
示例12: test_quantize_float32_to_int8
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import abs [as 別名]
def test_quantize_float32_to_int8():
shape = rand_shape_nd(4)
data = rand_ndarray(shape, 'default', dtype='float32')
min_range = mx.nd.min(data)
max_range = mx.nd.max(data)
qdata, min_val, max_val = mx.nd.contrib.quantize(data, min_range, max_range, out_type='int8')
data_np = data.asnumpy()
min_range = min_range.asscalar()
max_range = max_range.asscalar()
real_range = np.maximum(np.abs(min_range), np.abs(max_range))
quantized_range = 127.0
scale = quantized_range / real_range
assert qdata.dtype == np.int8
assert min_val.dtype == np.float32
assert max_val.dtype == np.float32
assert same(min_val.asscalar(), -real_range)
assert same(max_val.asscalar(), real_range)
qdata_np = (np.sign(data_np) * np.minimum(np.abs(data_np) * scale + 0.5, quantized_range)).astype(np.int8)
assert_almost_equal(qdata.asnumpy(), qdata_np, atol = 1)
示例13: heuristic_fn_vec
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import abs [as 別名]
def heuristic_fn_vec(n1, n2, n_ori, step_size):
# n1 is a vector and n2 is a single point.
dx = (n1[:,0] - n2[0,0])/step_size
dy = (n1[:,1] - n2[0,1])/step_size
dt = n1[:,2] - n2[0,2]
dt = np.mod(dt, n_ori)
dt = np.minimum(dt, n_ori-dt)
if n_ori == 6:
if dx*dy > 0:
d = np.maximum(np.abs(dx), np.abs(dy))
else:
d = np.abs(dy-dx)
elif n_ori == 4:
d = np.abs(dx) + np.abs(dy)
return (d + dt).reshape((-1,1))
示例14: _reward
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import abs [as 別名]
def _reward(self):
current_base_position = self.minitaur.GetBasePosition()
forward_reward = current_base_position[0] - self._last_base_position[0]
# Cap the forward reward if a cap is set.
forward_reward = min(forward_reward, self._forward_reward_cap)
# Penalty for sideways translation.
drift_reward = -abs(current_base_position[1] - self._last_base_position[1])
# Penalty for sideways rotation of the body.
orientation = self.minitaur.GetBaseOrientation()
rot_matrix = pybullet.getMatrixFromQuaternion(orientation)
local_up_vec = rot_matrix[6:]
shake_reward = -abs(np.dot(np.asarray([1, 1, 0]), np.asarray(local_up_vec)))
energy_reward = -np.abs(
np.dot(self.minitaur.GetMotorTorques(),
self.minitaur.GetMotorVelocities())) * self._time_step
objectives = [forward_reward, energy_reward, drift_reward, shake_reward]
weighted_objectives = [
o * w for o, w in zip(objectives, self._objective_weights)
]
reward = sum(weighted_objectives)
self._objectives.append(objectives)
return reward
示例15: _reward
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import abs [as 別名]
def _reward(self):
current_base_position = self.minitaur.GetBasePosition()
forward_reward = current_base_position[0] - self._last_base_position[0]
drift_reward = -abs(current_base_position[1] - self._last_base_position[1])
shake_reward = -abs(current_base_position[2] - self._last_base_position[2])
self._last_base_position = current_base_position
energy_reward = np.abs(
np.dot(self.minitaur.GetMotorTorques(),
self.minitaur.GetMotorVelocities())) * self._time_step
reward = (
self._distance_weight * forward_reward -
self._energy_weight * energy_reward + self._drift_weight * drift_reward
+ self._shake_weight * shake_reward)
self._objectives.append(
[forward_reward, energy_reward, drift_reward, shake_reward])
return reward