本文整理匯總了Python中numpy.__version__方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.__version__方法的具體用法?Python numpy.__version__怎麽用?Python numpy.__version__使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類numpy
的用法示例。
在下文中一共展示了numpy.__version__方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: load_library
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import __version__ [as 別名]
def load_library(libname):
# numpy 1.6 has bug in ctypeslib.load_library, see numpy/distutils/misc_util.py
if '1.6' in numpy.__version__:
if (sys.platform.startswith('linux') or
sys.platform.startswith('gnukfreebsd')):
so_ext = '.so'
elif sys.platform.startswith('darwin'):
so_ext = '.dylib'
elif sys.platform.startswith('win'):
so_ext = '.dll'
else:
raise OSError('Unknown platform')
libname_so = libname + so_ext
return ctypes.CDLL(os.path.join(os.path.dirname(__file__), libname_so))
else:
_loaderpath = os.path.dirname(__file__)
return numpy.ctypeslib.load_library(libname, _loaderpath)
#Fixme, the standard resouce module gives wrong number when objects are released
#see http://fa.bianp.net/blog/2013/different-ways-to-get-memory-consumption-or-lessons-learned-from-memory_profiler/#fn:1
#or use slow functions as memory_profiler._get_memory did
示例2: get_pkg_info
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import __version__ [as 別名]
def get_pkg_info(pkg_path):
''' Return dict describing the context of this package
Parameters
----------
pkg_path : str
path containing __init__.py for package
Returns
-------
context : dict
with named parameters of interest
'''
src, hsh = pkg_commit_hash(pkg_path)
import numpy
return dict(
pkg_path=pkg_path,
commit_source=src,
commit_hash=hsh,
sys_version=sys.version,
sys_executable=sys.executable,
sys_platform=sys.platform,
np_version=numpy.__version__)
示例3: __init__
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import __version__ [as 別名]
def __init__(self, env_fns):
if np.__version__ == '1.16.0':
warnings.warn("""
NumPy 1.16.0 can cause severe memory leak in chainerrl.envs.MultiprocessVectorEnv.
We recommend using other versions of NumPy.
See https://github.com/numpy/numpy/issues/12793 for details.
""") # NOQA
nenvs = len(env_fns)
self.remotes, self.work_remotes = zip(*[Pipe() for _ in range(nenvs)])
self.ps = \
[Process(target=worker, args=(work_remote, env_fn))
for (work_remote, env_fn) in zip(self.work_remotes, env_fns)]
for p in self.ps:
p.start()
self.last_obs = [None] * self.num_envs
self.remotes[0].send(('get_spaces', None))
self.action_space, self.observation_space = self.remotes[0].recv()
self.closed = False
示例4: sanity_check_dependencies
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import __version__ [as 別名]
def sanity_check_dependencies():
import numpy
import requests
import six
if distutils.version.LooseVersion(numpy.__version__) < distutils.version.LooseVersion('1.10.4'):
logger.warn("You have 'numpy' version %s installed, but 'gym' requires at least 1.10.4. HINT: upgrade via 'pip install -U numpy'.", numpy.__version__)
if distutils.version.LooseVersion(requests.__version__) < distutils.version.LooseVersion('2.0'):
logger.warn("You have 'requests' version %s installed, but 'gym' requires at least 2.0. HINT: upgrade via 'pip install -U requests'.", requests.__version__)
# We automatically configure a logger with a simple stderr handler. If
# you'd rather customize logging yourself, run undo_logger_setup.
#
# (Note: this needs to happen before importing the rest of gym, since
# we may print a warning at load time.)
示例5: get_numpy_status
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import __version__ [as 別名]
def get_numpy_status():
"""
Returns a dictionary containing a boolean specifying whether NumPy
is up-to-date, along with the version string (empty string if
not installed).
"""
numpy_status = {}
try:
import numpy
numpy_version = numpy.__version__
numpy_status['up_to_date'] = parse_version(
numpy_version) >= parse_version(NUMPY_MIN_VERSION)
numpy_status['version'] = numpy_version
except ImportError:
traceback.print_exc()
numpy_status['up_to_date'] = False
numpy_status['version'] = ""
return numpy_status
示例6: get_cython_status
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import __version__ [as 別名]
def get_cython_status():
"""
Returns a dictionary containing a boolean specifying whether Cython is
up-to-date, along with the version string (empty string if not installed).
"""
cython_status = {}
try:
import Cython
from Cython.Build import cythonize
cython_version = Cython.__version__
cython_status['up_to_date'] = parse_version(
cython_version) >= parse_version(CYTHON_MIN_VERSION)
cython_status['version'] = cython_version
except ImportError:
traceback.print_exc()
cython_status['up_to_date'] = False
cython_status['version'] = ""
return cython_status
示例7: _show_system_info
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import __version__ [as 別名]
def _show_system_info(self):
nose = import_nose()
import numpy
print("NumPy version %s" % numpy.__version__)
relaxed_strides = numpy.ones((10, 1), order="C").flags.f_contiguous
print("NumPy relaxed strides checking option:", relaxed_strides)
npdir = os.path.dirname(numpy.__file__)
print("NumPy is installed in %s" % npdir)
if 'scipy' in self.package_name:
import scipy
print("SciPy version %s" % scipy.__version__)
spdir = os.path.dirname(scipy.__file__)
print("SciPy is installed in %s" % spdir)
pyversion = sys.version.replace('\n', '')
print("Python version %s" % pyversion)
print("nose version %d.%d.%d" % nose.__versioninfo__)
示例8: status
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import __version__ [as 別名]
def status(self, status, **kwargs):
if self.server:
try:
conn = HTTPConnection(self.server, self.port)
conn.request('GET', '/version/')
resp = conn.getresponse()
if not resp.read().startswith('Experiment'):
raise RuntimeError()
HTTPConnection(self.server, self.port).request('POST', '', str(dict({
'id': self.id,
'version': __version__,
'status': status,
'hostname': self.hostname,
'cwd': self.cwd,
'script_path': self.script_path,
'script': self.script,
'comment': self.comment,
'time': self.time,
}, **kwargs)))
except:
warn('Unable to connect to \'{0}:{1}\'.'.format(self.server, self.port))
示例9: find_class
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import __version__ [as 別名]
def find_class(self, module, name):
"""
Helps Unpickler to find certain Numpy modules.
"""
try:
numpy_version = StrictVersion(numpy.__version__)
if numpy_version >= StrictVersion('1.5.0'):
if module == 'numpy.core.defmatrix':
module = 'numpy.matrixlib.defmatrix'
except ValueError:
pass
return Unpickler.find_class(self, module, name)
示例10: exact_xp_2_xxstg_mad
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import __version__ [as 別名]
def exact_xp_2_xxstg_mad(xp, gamref):
# to mad format
N = xp.shape[0]
xxstg = np.zeros((N, 6))
pref = m_e_eV * np.sqrt(gamref ** 2 - 1)
u = np.c_[xp[:, 3], xp[:, 4], xp[:, 5] + pref]
gamma = np.sqrt(1 + np.sum(u * u, 1) / m_e_eV ** 2)
beta = np.sqrt(1 - gamma ** -2)
betaref = np.sqrt(1 - gamref ** -2)
if np.__version__ > "1.8":
p0 = np.linalg.norm(u, 2, 1).reshape((N, 1))
else:
p0 = np.sqrt(u[:, 0] ** 2 + u[:, 1] ** 2 + u[:, 2] ** 2).reshape((N, 1))
u = u / p0
cdt = -xp[:, 2] / (beta * u[:, 2])
xxstg[:, 0] = xp[:, 0] + beta * u[:, 0] * cdt
xxstg[:, 2] = xp[:, 1] + beta * u[:, 1] * cdt
xxstg[:, 4] = cdt
xxstg[:, 1] = xp[:, 3] / pref
xxstg[:, 3] = xp[:, 4] / pref
xxstg[:, 5] = (gamma / gamref - 1) / betaref
return xxstg
示例11: exact_xxstg_2_xp_mad
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import __version__ [as 別名]
def exact_xxstg_2_xp_mad(xxstg, gamref):
# from mad format
N = int(xxstg.size / 6)
xp = np.zeros((N, 6))
pref = m_e_eV * np.sqrt(gamref ** 2 - 1)
betaref = np.sqrt(1 - gamref ** -2)
gamma = (betaref * xxstg[5] + 1) * gamref
beta = np.sqrt(1 - gamma ** -2)
pz2pref = np.sqrt(((gamma * beta) / (gamref * betaref)) ** 2 - xxstg[1] ** 2 - xxstg[3] ** 2)
u = np.c_[xxstg[1] / pz2pref, xxstg[3] / pz2pref, np.ones(N)]
if np.__version__ > "1.8":
norm = np.linalg.norm(u, 2, 1).reshape((N, 1))
else:
norm = np.sqrt(u[:, 0] ** 2 + u[:, 1] ** 2 + u[:, 2] ** 2).reshape((N, 1))
u = u / norm
xp[:, 0] = xxstg[0] - u[:, 0] * beta * xxstg[4]
xp[:, 1] = xxstg[2] - u[:, 1] * beta * xxstg[4]
xp[:, 2] = -u[:, 2] * beta * xxstg[4]
xp[:, 3] = u[:, 0] * gamma * beta * m_e_eV
xp[:, 4] = u[:, 1] * gamma * beta * m_e_eV
xp[:, 5] = u[:, 2] * gamma * beta * m_e_eV - pref
return xp
示例12: exact_xp_2_xxstg_dp
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import __version__ [as 別名]
def exact_xp_2_xxstg_dp(xp, gamref):
# dp/p0
N = xp.shape[0]
xxstg = np.zeros((N, 6))
pref = m_e_eV * np.sqrt(gamref ** 2 - 1)
u = np.c_[xp[:, 3], xp[:, 4], xp[:, 5] + pref]
gamma = np.sqrt(1 + np.sum(u * u, 1) / m_e_eV ** 2)
beta = np.sqrt(1 - gamma ** -2)
if np.__version__ > "1.8":
p0 = np.linalg.norm(u, 2, 1).reshape((N, 1))
else:
p0 = np.sqrt(u[:, 0] ** 2 + u[:, 1] ** 2 + u[:, 2] ** 2).reshape((N, 1))
u = u / p0
cdt = -xp[:, 2] / (beta * u[:, 2])
xxstg[:, 0] = xp[:, 0] + beta * u[:, 0] * cdt
xxstg[:, 2] = xp[:, 1] + beta * u[:, 1] * cdt
xxstg[:, 4] = cdt
xxstg[:, 1] = u[:, 0] / u[:, 2]
xxstg[:, 3] = u[:, 1] / u[:, 2]
xxstg[:, 5] = p0.reshape(N) / pref - 1
return xxstg
示例13: exact_xxstg_2_xp_dp
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import __version__ [as 別名]
def exact_xxstg_2_xp_dp(xxstg, gamref):
# dp/p0
N = len(xxstg) / 6
xp = np.zeros((N, 6))
pref = m_e_eV * np.sqrt(gamref ** 2 - 1)
p = pref * (1 + xxstg[5::6])
gamma = np.sqrt((p / m_e_eV) ** 2 + 1)
beta = np.sqrt(1 - gamma ** -2)
u = np.c_[xxstg[1::6], xxstg[3::6], np.ones(N)]
if np.__version__ > "1.8":
norm = np.linalg.norm(u, 2, 1).reshape((N, 1))
else:
norm = np.sqrt(u[:, 0] ** 2 + u[:, 1] ** 2 + u[:, 2] ** 2).reshape((N, 1))
u = u / norm
xp[:, 0] = xxstg[0::6] - u[:, 0] * beta * xxstg[4::6]
xp[:, 1] = xxstg[2::6] - u[:, 1] * beta * xxstg[4::6]
xp[:, 2] = -u[:, 2] * beta * xxstg[4::6]
xp[:, 3] = u[:, 0] * gamma * beta * m_e_eV
xp[:, 4] = u[:, 1] * gamma * beta * m_e_eV
xp[:, 5] = u[:, 2] * gamma * beta * m_e_eV - pref
return xp
示例14: exact_xp_2_xxstg_de
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import __version__ [as 別名]
def exact_xp_2_xxstg_de(xp, gamref):
# dE/E0
N = xp.shape[0]
xxstg = np.zeros((N, 6))
pref = m_e_eV * np.sqrt(gamref ** 2 - 1)
u = np.c_[xp[:, 3], xp[:, 4], xp[:, 5] + pref]
gamma = np.sqrt(1 + np.sum(u * u, 1) / m_e_eV ** 2)
beta = np.sqrt(1 - gamma ** -2)
if np.__version__ > "1.8":
p0 = np.linalg.norm(u, 2, 1).reshape((N, 1))
else:
p0 = np.sqrt(u[:, 0] ** 2 + u[:, 1] ** 2 + u[:, 2] ** 2).reshape((N, 1))
u = u / p0
cdt = -xp[:, 2] / (beta * u[:, 2])
xxstg[:, 0] = xp[:, 0] + beta * u[:, 0] * cdt
xxstg[:, 2] = xp[:, 1] + beta * u[:, 1] * cdt
xxstg[:, 4] = cdt
xxstg[:, 1] = u[:, 0] / u[:, 2]
xxstg[:, 3] = u[:, 1] / u[:, 2]
xxstg[:, 5] = gamma / gamref - 1
return xxstg
示例15: test_nan_to_nat_conversions
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import __version__ [as 別名]
def test_nan_to_nat_conversions():
df = DataFrame(dict({
'A': np.asarray(
lrange(10), dtype='float64'),
'B': Timestamp('20010101')
}))
df.iloc[3:6, :] = np.nan
result = df.loc[4, 'B'].value
assert (result == tslib.iNaT)
s = df['B'].copy()
s._data = s._data.setitem(indexer=tuple([slice(8, 9)]), value=np.nan)
assert (isna(s[8]))
# numpy < 1.7.0 is wrong
from distutils.version import LooseVersion
if LooseVersion(np.__version__) >= LooseVersion('1.7.0'):
assert (s[8].value == np.datetime64('NaT').astype(np.int64))