本文整理匯總了Python中numpy._NoValue方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy._NoValue方法的具體用法?Python numpy._NoValue怎麽用?Python numpy._NoValue使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類numpy
的用法示例。
在下文中一共展示了numpy._NoValue方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: unreduce_array
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import _NoValue [as 別名]
def unreduce_array(array, shape, axis, keepdims):
"""Reverse summing over a dimension, NumPy implementation.
Args:
array: The array that was reduced.
shape: The original shape of the array before reduction.
axis: The axis or axes that were summed.
keepdims: Whether these axes were kept as singleton axes.
Returns:
An array with axes broadcast to match the shape of the original array.
"""
# NumPy uses a special default value for keepdims, which is equivalent to
# False.
if axis is not None and (not keepdims or keepdims is numpy._NoValue): # pylint: disable=protected-access
if isinstance(axis, int):
axis = axis,
for ax in sorted(axis):
array = numpy.expand_dims(array, ax)
return numpy.broadcast_to(array, shape)
# The values are unary functions.
示例2: test_numpy_reloading
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import _NoValue [as 別名]
def test_numpy_reloading():
# gh-7844. Also check that relevant globals retain their identity.
import numpy as np
import numpy._globals
_NoValue = np._NoValue
VisibleDeprecationWarning = np.VisibleDeprecationWarning
ModuleDeprecationWarning = np.ModuleDeprecationWarning
reload(np)
assert_(_NoValue is np._NoValue)
assert_(ModuleDeprecationWarning is np.ModuleDeprecationWarning)
assert_(VisibleDeprecationWarning is np.VisibleDeprecationWarning)
assert_raises(RuntimeError, reload, numpy._globals)
reload(np)
assert_(_NoValue is np._NoValue)
assert_(ModuleDeprecationWarning is np.ModuleDeprecationWarning)
assert_(VisibleDeprecationWarning is np.VisibleDeprecationWarning)
示例3: _nanquantile_unchecked
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import _NoValue [as 別名]
def _nanquantile_unchecked(a, q, axis=None, out=None, overwrite_input=False,
interpolation='linear', keepdims=np._NoValue):
"""Assumes that q is in [0, 1], and is an ndarray"""
# apply_along_axis in _nanpercentile doesn't handle empty arrays well,
# so deal them upfront
if a.size == 0:
return np.nanmean(a, axis, out=out, keepdims=keepdims)
r, k = function_base._ureduce(
a, func=_nanquantile_ureduce_func, q=q, axis=axis, out=out,
overwrite_input=overwrite_input, interpolation=interpolation
)
if keepdims and keepdims is not np._NoValue:
return r.reshape(q.shape + k)
else:
return r
示例4: _wrapreduction
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import _NoValue [as 別名]
def _wrapreduction(obj, ufunc, method, axis, dtype, out, **kwargs):
passkwargs = {k: v for k, v in kwargs.items()
if v is not np._NoValue}
if type(obj) is not mu.ndarray:
try:
reduction = getattr(obj, method)
except AttributeError:
pass
else:
# This branch is needed for reductions like any which don't
# support a dtype.
if dtype is not None:
return reduction(axis=axis, dtype=dtype, out=out, **passkwargs)
else:
return reduction(axis=axis, out=out, **passkwargs)
return ufunc.reduce(obj, axis, dtype, out, **passkwargs)
示例5: _wrapreduction
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import _NoValue [as 別名]
def _wrapreduction(obj, ufunc, method, axis, dtype, out, **kwargs):
passkwargs = {}
for k, v in kwargs.items():
if v is not np._NoValue:
passkwargs[k] = v
if type(obj) is not mu.ndarray:
try:
reduction = getattr(obj, method)
except AttributeError:
pass
else:
# This branch is needed for reductions like any which don't
# support a dtype.
if dtype is not None:
return reduction(axis=axis, dtype=dtype, out=out, **passkwargs)
else:
return reduction(axis=axis, out=out, **passkwargs)
return ufunc.reduce(obj, axis, dtype, out, **passkwargs)
示例6: sometrue
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import _NoValue [as 別名]
def sometrue(a, axis=None, out=None, keepdims=np._NoValue):
"""
Check whether some values are true.
Refer to `any` for full documentation.
See Also
--------
any : equivalent function
"""
arr = asanyarray(a)
kwargs = {}
if keepdims is not np._NoValue:
kwargs['keepdims'] = keepdims
return arr.any(axis=axis, out=out, **kwargs)