當前位置: 首頁>>代碼示例>>Python>>正文


Python numpy.Infinity方法代碼示例

本文整理匯總了Python中numpy.Infinity方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.Infinity方法的具體用法?Python numpy.Infinity怎麽用?Python numpy.Infinity使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在numpy的用法示例。


在下文中一共展示了numpy.Infinity方法的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_constants

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import Infinity [as 別名]
def test_constants():
    assert chainerx.Inf is numpy.Inf
    assert chainerx.Infinity is numpy.Infinity
    assert chainerx.NAN is numpy.NAN
    assert chainerx.NINF is numpy.NINF
    assert chainerx.NZERO is numpy.NZERO
    assert chainerx.NaN is numpy.NaN
    assert chainerx.PINF is numpy.PINF
    assert chainerx.PZERO is numpy.PZERO
    assert chainerx.e is numpy.e
    assert chainerx.euler_gamma is numpy.euler_gamma
    assert chainerx.inf is numpy.inf
    assert chainerx.infty is numpy.infty
    assert chainerx.nan is numpy.nan
    assert chainerx.newaxis is numpy.newaxis
    assert chainerx.pi is numpy.pi 
開發者ID:chainer,項目名稱:chainer,代碼行數:18,代碼來源:test_constants.py

示例2: prim

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import Infinity [as 別名]
def prim(self):
        '''
        Returns Prim's minimum spanninng tree
        '''
        big_f = set([])
        costs = np.empty((self.n), dtype=object)
        costs[:] = np.max(self.costs) + 1
        big_e = np.empty((self.n), dtype=object)
        big_q = set(range(self.n))
        tree_edges = np.array([], dtype=object)
        while len(big_q) > 0:
            v = np.argmin(costs)
            big_q.remove(v)
            costs[v] = np.Infinity
            big_f.add(v)
            if big_e[v] is not None:
                tree_edges = np.append(tree_edges, None)
                tree_edges[-1] = (big_e[v], v)

            for i, w in zip(range(len(self.FSs[v])), self.FSs[v]):
                if w in big_q and self.FS_costs[v][i] < costs[w]:
                    costs[w] = self.FS_costs[v][i]
                    big_e[w] = v
        return tree_edges 
開發者ID:dnlcrl,項目名稱:PyGraphArt,代碼行數:26,代碼來源:graph.py

示例3: get_k

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import Infinity [as 別名]
def get_k(df, groupby, unknown=None):
    """
        Return the k-anonymity level of a df, grouped by the specified columns.

        :param df: The dataframe to get k from
        :param groupby: The columns to group by
        :type df: pandas.DataFrame
        :type groupby: Array
        :return: k-anonymity
        :rtype: int
    """
    df = _remove_unknown(df, groupby, unknown)
    size_group = df.groupby(groupby).size()
    if len(size_group) == 0:
        return np.Infinity
    return min(size_group) 
開發者ID:SGMAP-AGD,項目名稱:anonymisation,代碼行數:18,代碼來源:anonymity.py

示例4: bellman_ford

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import Infinity [as 別名]
def bellman_ford(self, source):
        '''
        Returns Labels-algorithm's shortest paths from source to all other
        nodes, if the (directed) graph doesn't contains cycles
        '''
        if self.oriented is False:
            print 'cannot apply bellman_ford, graph is not oriented'
            return
        dist = np.array([np.Infinity for x in range(self.n)], dtype=np.float32)
        pred = np.empty((self.n), dtype=np.int)
        pred[source] = source
        dist[source] = 0

        for i in np.arange(1, self.n):
            for e in range(len(self.edges)):
                if dist[self.edges[e][0]] + self.costs[e] < dist[self.edges[e][1]]:
                    dist[self.edges[e][1]] = dist[
                        self.edges[e][0]] + self.costs[e]
                    pred[self.edges[e][1]] = self.edges[e][0]

        for e in range(len(self.edges)):
            if dist[self.edges[e][1]] > dist[self.edges[e][0]] + self.costs[e]:
                print 'Error, Graph contains a negative-weight cycle'
                break

        edges = np.array([], dtype=object)
        for v in range(len(pred)):
            edges = np.append(edges, None)
            edges[-1] = [pred[v], v]

        return edges  # , prev, dist 
開發者ID:dnlcrl,項目名稱:PyGraphArt,代碼行數:33,代碼來源:graph.py

示例5: floyd_warshall

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import Infinity [as 別名]
def floyd_warshall(self, source):
        '''
        Returns floyd_warshall's shortest paths from source to all other
        nodes, if the (directed) graph doesn't contains negative cycles
        '''
        print '''warning! apply this algorithm only if constricted, it takes\\
        O(n^3)!'''
        print 'O(n^3) = O(', self.n**3, ')'
        dist = np.empty((self.n, self.n), dtype=np.float32)
        pred = np.zeros((self.n, self.n), dtype=np.int)
        dist.fill(np.Infinity)
        for v in range(self.n):
            dist[v][v] = .0
        for e in range(len(self.edges)):
            u = self.edges[e][0]
            v = self.edges[e][1]
            dist[u][v] = self.costs[e]
            pred[u][v] = v
        for h in range(1, self.n):
            for i in range(1, self.n):
                for j in range(self.n):
                    if dist[i][h] + dist[h][j] < dist[i][j]:
                        dist[i][j] = dist[i][h] + dist[h][j]
                        pred[i][j] = pred[h][j]
            for i in range(1, self.n):
                if dist[i][i] < 0:
                    print 'Error! found negative cycle, thus the problem is inferiorly unlinmited'
                    return
        edges = np.array([], dtype=object)
        for v in range(len(pred)):
            edges = np.append(edges, None)
            edges[-1] = [pred[source][v], v]

        return edges  # , prev, dist 
開發者ID:dnlcrl,項目名稱:PyGraphArt,代碼行數:36,代碼來源:graph.py

示例6: predict_log_proba

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import Infinity [as 別名]
def predict_log_proba(self, examples, dynamic_resource=None):
        X, _, _ = self.get_feature_matrix(examples, dynamic_resource=dynamic_resource)
        predictions = self._predict_proba(X, self._clf.predict_log_proba)

        # JSON can't reliably encode infinity, so replace it with large number
        for row in predictions:
            _, probas = row
            for label, proba in probas.items():
                if proba == -np.Infinity:
                    probas[label] = _NEG_INF
        return predictions 
開發者ID:cisco,項目名稱:mindmeld,代碼行數:13,代碼來源:text_models.py

示例7: _psnr_differ

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import Infinity [as 別名]
def _psnr_differ(self, annotation_image, prediction_image):
        prediction = np.asarray(prediction_image).astype(np.float)
        ground_truth = np.asarray(annotation_image).astype(np.float)

        height, width = prediction.shape[:2]
        prediction = prediction[
            self.scale_border:height - self.scale_border,
            self.scale_border:width - self.scale_border
        ]
        ground_truth = ground_truth[
            self.scale_border:height - self.scale_border,
            self.scale_border:width - self.scale_border
        ]
        image_difference = (prediction - ground_truth) / 255.  # rgb color space

        r_channel_diff = image_difference[:, :, self.channel_order[0]]
        g_channel_diff = image_difference[:, :, self.channel_order[1]]
        b_channel_diff = image_difference[:, :, self.channel_order[2]]

        channels_diff = (r_channel_diff * 65.738 + g_channel_diff * 129.057 + b_channel_diff * 25.064) / 256

        mse = np.mean(channels_diff ** 2)
        if mse == 0:
            return np.Infinity

        return -10 * math.log10(mse) 
開發者ID:opencv,項目名稱:open_model_zoo,代碼行數:28,代碼來源:regression.py

示例8: lt_factor

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import Infinity [as 別名]
def lt_factor(s, l, M, V, mp, p, gamma):
    cVc = (V[l, l] - 2 * V[s, l] + V[s, s]) / 2.0
    Vc = (V[:, l] - V[:, s]) / sq2
    cM = (M[l] - M[s]) / sq2
    cVnic = np.max([cVc / (1 - p * cVc), 0])
    cmni = cM + cVnic * (p * cM - mp)
    z = cmni / np.sqrt(cVnic + 1e-25)
    if np.isnan(z):
        z = -np.inf
    e, lP, exit_flag = log_relative_gauss(z)
    if exit_flag == 0:
        alpha = e / np.sqrt(cVnic)
        # beta  = alpha * (alpha + cmni / cVnic);
        # r     = beta * cVnic / (1 - cVnic * beta);
        beta = alpha * (alpha * cVnic + cmni)
        r = beta / (1 - beta)
        # new message
        pnew = r / cVnic
        mpnew = r * (alpha + cmni / cVnic) + alpha

        # update terms
        dp = np.max([-p + eps, gamma * (pnew - p)])  # at worst, remove message
        dmp = np.max([-mp + eps, gamma * (mpnew - mp)])
        d = np.max([dmp, dp])  # for convergence measures

        pnew = p + dp
        mpnew = mp + dmp
        # project out to marginal
        Vnew = V - dp / (1 + dp * cVc) * np.outer(Vc, Vc)

        Mnew = M + (dmp - cM * dp) / (1 + dp * cVc) * Vc
        if np.any(np.isnan(Vnew)):
            raise Exception("an error occurs while running expectation "
                            "propagation in entropy search. "
                            "Resulting variance contains NaN")
        # % there is a problem here, when z is very large
        logS = lP - 0.5 * (np.log(beta) - np.log(pnew) - np.log(cVnic)) \
               + (alpha * alpha) / (2 * beta) * cVnic

    elif exit_flag == -1:
        d = np.NAN
        Mnew = 0
        Vnew = 0
        pnew = 0
        mpnew = 0
        logS = -np.Infinity
    elif exit_flag == 1:
        d = 0
        # remove message from marginal:
        # new message
        pnew = 0
        mpnew = 0
        # update terms
        dp = -p  # at worst, remove message
        dmp = -mp
        d = max([dmp, dp])  # for convergence measures
        # project out to marginal
        Vnew = V - dp / (1 + dp * cVc) * (np.outer(Vc, Vc))
        Mnew = M + (dmp - cM * dp) / (1 + dp * cVc) * Vc
        logS = 0
    return Mnew, Vnew, pnew, mpnew, logS, d 
開發者ID:amzn,項目名稱:emukit,代碼行數:63,代碼來源:epmgp.py

示例9: get_coulomb_matrix

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import Infinity [as 別名]
def get_coulomb_matrix(numbers, coords, alpha=1, use_decay=False):
    r"""
    Return the coulomb matrix for the given coords and numbers.

    .. math::

        C_{ij} = \begin{cases}
            \frac{Z_i Z_j}{\| r_i - r_j \|^\alpha} & i \neq j\\
            \frac{1}{2} Z_i^{2.4} & i = j
        \end{cases}

    Parameters
    ----------
    numbers : array-like, shape=(n_atoms, )
        The atomic numbers of all the atoms

    coords : array-like, shape=(n_atoms, 3)
        The xyz coordinates of all the atoms (in angstroms)

    alpha : number, default=6
        Some value to exponentiate the distance in the coulomb matrix.

    use_decay : bool, default=False
        This setting defines an extra decay for the values as they get futher
        away from the "central atom". This is to alleviate issues the arise as
        atoms enter or leave the cutoff radius.

    Returns
    -------
    top : array, shape=(n_atoms, n_atoms)
        The coulomb matrix
    """
    top = numpy.outer(numbers, numbers).astype(numpy.float64)
    r = cdist(coords, coords)
    if use_decay:
        other = cdist([coords[0]], coords).reshape(-1)
        r += numpy.add.outer(other, other)

    r **= alpha

    with numpy.errstate(divide='ignore', invalid='ignore'):
        numpy.divide(top, r, top)
    numpy.fill_diagonal(top, 0.5 * numpy.array(numbers) ** 2.4)
    top[top == numpy.Infinity] = 0
    top[numpy.isnan(top)] = 0
    return top 
開發者ID:crcollins,項目名稱:molml,代碼行數:48,代碼來源:utils.py


注:本文中的numpy.Infinity方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。