當前位置: 首頁>>代碼示例>>Python>>正文


Python numpy.Array方法代碼示例

本文整理匯總了Python中numpy.Array方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.Array方法的具體用法?Python numpy.Array怎麽用?Python numpy.Array使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在numpy的用法示例。


在下文中一共展示了numpy.Array方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _variable_on_cpu

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import Array [as 別名]
def _variable_on_cpu(name, shape, initializer, trainable):
    """Helper function to get a variable stored on cpu.

    Args:
      name: A `str` holding the name of the variable.
      shape: An `Array` defining the shape of the Variable. For example: [2,1,3].
      initializer: The `tf.Initializer` to use to initialize the variable.
      trainable: A `bool` stating wheter the variable is trainable or not.

    Returns:
      A `tf.Variable` on CPU.
    """
    with tf.device('/cpu:0'): #TODO will this work?
        dtype = tf.float32
        var = tf.get_variable(name, shape, initializer=initializer, dtype=dtype, trainable=trainable)
    #dtf.add_to_collection('CPU', var)
    return var 
開發者ID:igemsoftware2017,項目名稱:AiGEM_TeamHeidelberg2017,代碼行數:19,代碼來源:helpers.py

示例2: process_hidden_tensors

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import Array [as 別名]
def process_hidden_tensors(t):
    """Embeddings are returned from the BERT model in a non-ideal embedding shape:
        - unnecessary batch dimension
        - Undesired second sentence "[SEP]".
    
    Drop the unnecessary information and just return what we need for the first sentence
    """
    # Drop unnecessary batch dim and second sent
    t = t.squeeze(0)[:-1]

    # Drop second sentence sep ??
    t = t[1:-1]

    # Convert to numpy
    return t.data.numpy()


# np.Array -> np.Array 
開發者ID:bhoov,項目名稱:exbert,代碼行數:20,代碼來源:token_processing.py

示例3: __init__

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import Array [as 別名]
def __init__( self, title, subdivisions, grid_centering='G', shift=np.array( [ 0., 0., 0. ] ) ):
        """
        Initialise an AutoKPoints object

        Args:
            title (Str): The first line of the file, treated as a comment by VASP.
            grid_centering (Str, optional): Specify gamma-centered (G) or the original Monkhorst-Pack scheme (MP). Default is 'G'.
            subdivisions: (np.Array( Int, Int, Int )): Numbers of subdivisions along each reciprocal lattice vector.
            shift: (np.Array( Float, Float, Float ), optional): Optional shift of the mesh (s_1, s_2, s_3). Default is ( [ 0., 0., 0. ] ).

        Returns:
            None
        """
        accepted_grid_centerings = [ 'G', 'MP' ]
        if grid_centering not in accepted_grid_centerings:
            raise ValueError
        self.title = title
        self.grid_centering = grid_centering
        self.subdivisions = subdivisions
        self.shift = shift 
開發者ID:bjmorgan,項目名稱:vasppy,代碼行數:22,代碼來源:kpoints.py

示例4: update_mask

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import Array [as 別名]
def update_mask(record, mask_array):
    """Update mask in tensorflow example.

    Args:
        record (tf.train.Example): Record to update
        mask_array (numpy.Array): HxW array of class values.

    Returns: Updated tf.train.Example.
    """
    def norm2bytes(value):
        return value.encode() if isinstance(value, str) and six.PY3 else value

    mask_data = get_png_string(mask_array)
    feature = record.features.feature['image/segmentation/class/encoded']
    feature.bytes_list.value.pop()
    feature.bytes_list.value.append(norm2bytes(mask_data))
    return record 
開發者ID:fritzlabs,項目名稱:fritz-models,代碼行數:19,代碼來源:tfrecord_helpers.py

示例5: split_truncate_theta

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import Array [as 別名]
def split_truncate_theta(theta, chi_max, eps):
    """Split and truncate a two-site wave function in mixed canonical form.

    Split a two-site wave function as follows::
          vL --(theta)-- vR     =>    vL --(A)--diag(S)--(B)-- vR
                |   |                       |             |
                i   j                       i             j

    Afterwards, truncate in the new leg (labeled ``vC``).

    Parameters
    ----------
    theta : np.Array[ndim=4]
        Two-site wave function in mixed canonical form, with legs ``vL, i, j, vR``.
    chi_max : int
        Maximum number of singular values to keep
    eps : float
        Discard any singular values smaller than that.

    Returns
    -------
    A : np.Array[ndim=3]
        Left-canonical matrix on site i, with legs ``vL, i, vC``
    S : np.Array[ndim=1]
        Singular/Schmidt values.
    B : np.Array[ndim=3]
        Right-canonical matrix on site j, with legs ``vC, j, vR``
    """
    chivL, dL, dR, chivR = theta.shape
    theta = np.reshape(theta, [chivL * dL, dR * chivR])
    X, Y, Z = svd(theta, full_matrices=False)
    # truncate
    chivC = min(chi_max, np.sum(Y > eps))
    piv = np.argsort(Y)[::-1][:chivC]  # keep the largest `chivC` singular values
    X, Y, Z = X[:, piv], Y[piv], Z[piv, :]
    # renormalize
    S = Y / np.linalg.norm(Y)  # == Y/sqrt(sum(Y**2))
    # split legs of X and Z
    A = np.reshape(X, [chivL, dL, chivC])
    B = np.reshape(Z, [chivC, dR, chivR])
    return A, S, B 
開發者ID:tenpy,項目名稱:tenpy,代碼行數:43,代碼來源:a_mps.py

示例6: reconstruct_batch

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import Array [as 別名]
def reconstruct_batch(self, output, batch_id, chosen_labels=None):
        """ Create the song associated with the network output
        Args:
            output (list[np.Array]): The ouput of the network (size batch_size*output_dim)
            batch_id (int): The batch that we must reconstruct
            chosen_labels (list[np.Array[batch_size, int]]): the sampled class at each timestep (useful to reconstruct the generated song)
        Return:
            Song: The reconstructed song
        """
        raise NotImplementedError('Abstract class') 
開發者ID:llSourcell,項目名稱:How_to_generate_music_in_tensorflow_LIVE,代碼行數:12,代碼來源:batchbuilder.py

示例7: update

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import Array [as 別名]
def update(self, sigmoid_logits, true_labels):
        """Update the ROC tracker, with the predictions on one batch made during validation.

        Args:
          sigmoid_logits: `np.Array` and 2D arrray holding the sigmoid logits for the validation batch.
          true_labels: `np.Array` and 2D arrray holding the true labels for the validation batch.
        """
        # threshold this thing
        # we consider a class "predicted" if it's sigmoid activation is higher than 0.5 (predicted labels)
        batch_predicted_labels = np.greater(sigmoid_logits, 0.5)
        batch_predicted_labels = batch_predicted_labels.astype(float)


        batch_pred_pos = np.sum(batch_predicted_labels, axis=0) #sum up along the batch dim, keep the channels
        batch_actual_pos = np.sum(true_labels, axis=0) #sum up along the batch dim, keep the channels
        # calculate the true positives:
        batch_true_pos = np.sum(np.multiply(batch_predicted_labels, true_labels), axis=0)

        # and update the counts
        self.pred_positives_sum += batch_pred_pos #what the model said
        self.actual_positives_sum += batch_actual_pos #what the labels say
        self.true_positive_sum += batch_true_pos # where labels and model predictions>0.5 match

        assert len(self.true_positive_sum) == self._opts._nclasses

        # add the predictions to the roc_score tracker
        self.roc_score.append(sigmoid_logits)
        self.roc_labels.append(true_labels) 
開發者ID:igemsoftware2017,項目名稱:AiGEM_TeamHeidelberg2017,代碼行數:30,代碼來源:helpers.py

示例8: softmax

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import Array [as 別名]
def softmax(X, theta = 1.0, axis = None):
    """Compute the softmax of each element along an axis of X.

    Args:
      X: `ND-Array`, Probably should be floats.
      theta: float parameter, used as a multiplier
        prior to exponentiation. Default = 1.0 (optional).
      axis: axis to compute values along. Default is the
        first non-singleton axis (optional).

    Returns:
    An `Array` of same shape as X. The result will sum to 1 along the specified axis.
    """
    # make X at least 2d
    y = np.atleast_2d(X)
    # find axis
    if axis is None:
        axis = next(j[0] for j in enumerate(y.shape) if j[1] > 1)
    # multiply y against the theta parameter,
    y = y * float(theta)
    # subtract the max for numerical stability
    y = y - np.expand_dims(np.max(y, axis = axis), axis)
    # exponentiate y
    y = np.exp(y)
    # take the sum along the specified axis
    ax_sum = np.expand_dims(np.sum(y, axis = axis), axis)
    # finally: divide elementwise
    p = y / ax_sum
    # flatten if X was 1D
    if len(X.shape) == 1: p = p.flatten()
    return p 
開發者ID:igemsoftware2017,項目名稱:AiGEM_TeamHeidelberg2017,代碼行數:33,代碼來源:helpers.py

示例9: normalize

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import Array [as 別名]
def normalize(a):
    """Divide each head by its norm"""
    norms = np.linalg.norm(a, axis=-1, keepdims=True)
    return a / norms


# np.Array:<a,b,c,d> -> np.Array<a,b,c*d> 
開發者ID:bhoov,項目名稱:exbert,代碼行數:9,代碼來源:token_processing.py

示例10: __init__

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import Array [as 別名]
def __init__(self, folder, pattern=FAISS_LAYER_PATTERN):
        super().__init__(folder, pattern)

        self.head_mask = partial(create_mask, self.head_size, self.nheads)

    # Int -> [Int] -> np.Array -> Int -> (np.Array(),  ) 
開發者ID:bhoov,項目名稱:exbert,代碼行數:8,代碼來源:index_wrapper.py

示例11: apply_griffin_lim

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import Array [as 別名]
def apply_griffin_lim(inputs, input_lens, CONFIG, ap):
    '''Apply griffin-lim to each sample iterating throught the first dimension.
    Args:
        inputs (Tensor or np.Array): Features to be converted by GL. First dimension is the batch size.
        input_lens (Tensor or np.Array): 1D array of sample lengths.
        CONFIG (Dict): TTS config.
        ap (AudioProcessor): TTS audio processor.
    '''
    wavs = []
    for idx, spec in enumerate(inputs):
        wav_len = (input_lens[idx] * ap.hop_length) - ap.hop_length  # inverse librosa padding
        wav = inv_spectrogram(spec, ap, CONFIG)
        # assert len(wav) == wav_len, f" [!] wav lenght: {len(wav)} vs expected: {wav_len}"
        wavs.append(wav[:wav_len])
    return wavs 
開發者ID:mozilla,項目名稱:TTS,代碼行數:17,代碼來源:synthesis.py


注:本文中的numpy.Array方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。