本文整理匯總了Python中numba.typeof方法的典型用法代碼示例。如果您正苦於以下問題:Python numba.typeof方法的具體用法?Python numba.typeof怎麽用?Python numba.typeof使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類numba
的用法示例。
在下文中一共展示了numba.typeof方法的13個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _Series_category
# 需要導入模塊: import numba [as 別名]
# 或者: from numba import typeof [as 別名]
def _Series_category(data=None, index=None, dtype=None, name=None, copy=False, fastpath=False):
"""
Implementation of constructor for pandas Series via objmode.
"""
# TODO: support other parameters (only data and dtype now)
ty = typeof(_reconstruct_Series(data, dtype))
from textwrap import dedent
text = dedent(f"""
def impl(data=None, index=None, dtype=None, name=None, copy=False, fastpath=False):
with objmode(series="{ty}"):
series = pd.Series(data, index, dtype, name, copy, fastpath)
return series
""")
globals, locals = {'objmode': objmode, 'pd': pd}, {}
exec(text, globals, locals)
impl = locals['impl']
return impl
示例2: make_dense_tree
# 需要導入模塊: import numba [as 別名]
# 或者: from numba import typeof [as 別名]
def make_dense_tree(data, rng_state, leaf_size=30, angular=False):
indices = np.arange(data.shape[0]).astype(np.int32)
hyperplanes = numba.typed.List.empty_list(dense_hyperplane_type)
offsets = numba.typed.List.empty_list(offset_type)
children = numba.typed.List.empty_list(children_type)
point_indices = numba.typed.List.empty_list(point_indices_type)
if angular:
make_angular_tree(
data,
indices,
hyperplanes,
offsets,
children,
point_indices,
rng_state,
leaf_size,
)
else:
make_euclidean_tree(
data,
indices,
hyperplanes,
offsets,
children,
point_indices,
rng_state,
leaf_size,
)
# print("Completed a tree")
result = FlatTree(hyperplanes, offsets, children, point_indices, leaf_size)
# print("Tree type is:", numba.typeof(result))
return result
示例3: infer_dictionary_types
# 需要導入模塊: import numba [as 別名]
# 或者: from numba import typeof [as 別名]
def infer_dictionary_types(d):
if not d:
raise ValueError("Empty dictionary cannot infer")
keys = list(d.keys())
type_keys = type(keys[0])
for k in keys:
if type(k) != type_keys:
raise ValueError("Inconsistent key types in dictionary")
values = list(d.values())
type_values = type(values[0])
for v in values:
if type(v) != type_values:
raise ValueError("Inconsistent value types in dictionary")
return numba.typeof(keys[0]), numba.typeof(values[0])
示例4: _Table_typeof
# 需要導入模塊: import numba [as 別名]
# 或者: from numba import typeof [as 別名]
def _Table_typeof(val, c):
return TableType(val.rowname, OrderedDict((n, numba.typeof(x)) for n, x in val.contents.items()), special=type(val), specialrow=type(val).Row)
示例5: _JaggedArray_typeof
# 需要導入模塊: import numba [as 別名]
# 或者: from numba import typeof [as 別名]
def _JaggedArray_typeof(val, c):
return JaggedArrayType(numba.typeof(val.starts), numba.typeof(val.stops), numba.typeof(val.content), special=type(val))
示例6: _replace_func
# 需要導入模塊: import numba [as 別名]
# 或者: from numba import typeof [as 別名]
def _replace_func(self, func, args, const=False, pre_nodes=None, extra_globals=None, pysig=None, kws=None):
glbls = {'numba': numba, 'numpy': numpy, 'sdc': sdc}
if extra_globals is not None:
glbls.update(extra_globals)
if pysig is not None:
pre_nodes = [] if pre_nodes is None else pre_nodes
scope = next(iter(self.state.func_ir.blocks.values())).scope
loc = scope.loc
def normal_handler(index, param, default):
return default
def default_handler(index, param, default):
d_var = ir.Var(scope, ir_utils.mk_unique_var('defaults'), loc)
self.state.typemap[d_var.name] = numba.typeof(default)
node = ir.Assign(ir.Const(default, loc), d_var, loc)
pre_nodes.append(node)
return d_var
args = numba.core.typing.fold_arguments(pysig, args, kws, normal_handler, default_handler, normal_handler)
arg_typs = tuple(self.state.typemap[v.name] for v in args)
if const:
new_args = []
for i, arg in enumerate(args):
val = guard(ir_utils.find_const, self.state.func_ir, arg)
if val:
new_args.append(types.literal(val))
else:
new_args.append(arg_typs[i])
arg_typs = tuple(new_args)
return sdc.utilities.utils.ReplaceFunc(func, arg_typs, args, glbls, pre_nodes)
示例7: _typeof_Categorical
# 需要導入模塊: import numba [as 別名]
# 或者: from numba import typeof [as 別名]
def _typeof_Categorical(val, c):
try:
dtype = pandas_support.from_dtype(val.dtype)
except NotImplementedError:
raise ValueError("Unsupported Categorical dtype: %s" % (val.dtype,))
codes = typeof(val.codes)
return Categorical(dtype=dtype, codes=codes)
示例8: test_typeof
# 需要導入模塊: import numba [as 別名]
# 或者: from numba import typeof [as 別名]
def test_typeof(self):
pd_value = self._pd_value()
nb_type = nb.typeof(pd_value)
assert(isinstance(nb_type, SeriesType))
assert(nb_type.dtype == CategoricalDtypeType(categories=[1, 2, 3], ordered=False))
assert(nb_type.index == types.none)
assert(nb_type.data == Categorical(CategoricalDtypeType(categories=[1, 2, 3], ordered=False)))
示例9: test_typeof
# 需要導入模塊: import numba [as 別名]
# 或者: from numba import typeof [as 別名]
def test_typeof(self):
pd_value = self._pd_value()
nb_type = nb.typeof(pd_value)
assert(isinstance(nb_type, Categorical))
assert(nb_type.pd_dtype == CategoricalDtypeType(categories=[1, 2, 3], ordered=False))
assert(nb_type.codes == types.Array(dtype=types.int8, ndim=1, layout='C', readonly=True))
示例10: _infer_series_dtype
# 需要導入模塊: import numba [as 別名]
# 或者: from numba import typeof [as 別名]
def _infer_series_dtype(S):
if S.dtype == np.dtype('O'):
# XXX assuming the whole column is strings if 1st val is string
# TODO: handle NA as 1st value
i = 0
while i < len(S) and (S.iloc[i] is np.nan or S.iloc[i] is None):
i += 1
if i == len(S):
raise ValueError(
"object dtype infer out of bounds for {}".format(S.name))
first_val = S.iloc[i]
if isinstance(first_val, list):
return _infer_series_list_dtype(S)
elif isinstance(first_val, str):
return string_type
else:
raise ValueError(
"object dtype infer: data type for column {} not supported".format(S.name))
elif isinstance(S.dtype, pd.CategoricalDtype):
return numba.typeof(S.dtype)
# regular numpy types
try:
return numpy_support.from_dtype(S.dtype)
except NotImplementedError:
raise ValueError("np dtype infer: data type for column {} not supported".format(S.name))
示例11: _get_cat_obj_items
# 需要導入模塊: import numba [as 別名]
# 或者: from numba import typeof [as 別名]
def _get_cat_obj_items(categories, c):
assert len(categories) > 0
val = categories[0]
if isinstance(val, str):
return [c.pyapi.string_from_constant_string(item) for item in categories]
dtype = numba.typeof(val)
return [c.box(dtype, c.context.get_constant(dtype, item)) for item in categories]
示例12: __call__
# 需要導入模塊: import numba [as 別名]
# 或者: from numba import typeof [as 別名]
def __call__(self, *args):
arg_type = tuple(numba.typeof(arg) for arg in args)
try:
func = self.__cache[arg_type]
except KeyError:
func = self.__cache[arg_type] = self.__func(*arg_type)
return func(*args)
示例13: paramtypes
# 需要導入模塊: import numba [as 別名]
# 或者: from numba import typeof [as 別名]
def paramtypes(args):
try:
import numba as nb
except ImportError:
return None
else:
return tuple(nb.typeof(x) for x in args)