本文整理匯總了Python中numba.prange方法的典型用法代碼示例。如果您正苦於以下問題:Python numba.prange方法的具體用法?Python numba.prange怎麽用?Python numba.prange使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類numba
的用法示例。
在下文中一共展示了numba.prange方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _update_gradients_hessians_binary_crossentropy
# 需要導入模塊: import numba [as 別名]
# 或者: from numba import prange [as 別名]
def _update_gradients_hessians_binary_crossentropy(gradients, hessians,
y_true, raw_predictions):
# Note: using LightGBM version (first mapping {0, 1} into {-1, 1})
# will cause overflow issues in the exponential as we're using float32
# precision.
# shape (n_samples, 1) --> (n_samples,). reshape(-1) is more likely to
# return a view.
raw_predictions = raw_predictions.reshape(-1)
n_samples = raw_predictions.shape[0]
starts, ends, n_threads = get_threads_chunks(total_size=n_samples)
for thread_idx in prange(n_threads):
for i in range(starts[thread_idx], ends[thread_idx]):
gradients[i] = _expit(raw_predictions[i]) - y_true[i]
gradient_abs = np.abs(gradients[i])
hessians[i] = gradient_abs * (1. - gradient_abs)
示例2: _update_raw_predictions
# 需要導入模塊: import numba [as 別名]
# 或者: from numba import prange [as 別名]
def _update_raw_predictions(leaves_data, raw_predictions):
"""Update raw_predictions by reading the predictions of the ith tree
directly form the leaves.
Can only be used for predicting the training data. raw_predictions
contains the sum of the tree values from iteration 0 to i - 1. This adds
the predictions of the ith tree to raw_predictions.
Parameters
----------
leaves_data: list of tuples (leaf.value, leaf.sample_indices)
The leaves data used to update raw_predictions.
raw_predictions : array-like, shape=(n_samples,)
The raw predictions for the training data.
"""
for leaf_idx in prange(len(leaves_data)):
leaf_value, sample_indices = leaves_data[leaf_idx]
for sample_idx in sample_indices:
raw_predictions[sample_idx] += leaf_value
示例3: _diamond_step
# 需要導入模塊: import numba [as 別名]
# 或者: from numba import prange [as 別名]
def _diamond_step(DS_array, step_size, roughness):
half_step = step_size // 2
for i in nb.prange(0, DS_array.shape[0] // step_size):
i = i * step_size + half_step
for j in nb.prange(0, DS_array.shape[0] // step_size):
j = j * step_size + half_step
if DS_array[i,j] == -1.0:
ul = DS_array[i - half_step, j - half_step]
ur = DS_array[i - half_step, j + half_step]
ll = DS_array[i + half_step, j - half_step]
lr = DS_array[i + half_step, j + half_step]
ave = (ul + ur + ll + lr) / 4.0
rand_val = random.uniform(0, 1)
DS_array[i, j] = roughness * rand_val + (1.0 - roughness) * ave
示例4: _rmatvec_numba_table
# 需要導入模塊: import numba [as 別名]
# 或者: from numba import prange [as 別名]
def _rmatvec_numba_table(x, y, dims, dimsd, interp, table, dtable):
"""numba implementation of adjoint mode with table.
See official documentation for description of variables
"""
dim0, dim1 = dims
x = x.reshape(dimsd)
for ix0 in prange(dim0):
for it in range(dim1):
indices = table[ix0, it]
if interp:
dindices = dtable[ix0, it]
for i, indexfloat in enumerate(indices):
index = int(indexfloat)
if index != -9223372036854775808: # =int(np.nan)
if not interp:
y[ix0, it] += x[i, index]
else:
y[ix0, it] += x[i, index]*(1 - dindices[i]) + \
x[i, index + 1]*dindices[i]
return y.ravel()
示例5: _rmatvec_numba_onthefly
# 需要導入模塊: import numba [as 別名]
# 或者: from numba import prange [as 別名]
def _rmatvec_numba_onthefly(x, y, dims, dimsd, interp, fh):
"""numba implementation of adjoint mode with on-the-fly computations.
See official documentation for description of variables
"""
dim0, dim1 = dims
x = x.reshape(dimsd)
for ix0 in prange(dim0):
for it in range(dim1):
if interp:
indices, dindices = fh(ix0, it)
else:
indices, dindices = fh(ix0, it)
for i, indexfloat in enumerate(indices):
index = int(indexfloat)
if index != -9223372036854775808: # =int(np.nan)
if not interp:
y[ix0, it] += x[i, index]
else:
y[ix0, it] += x[i, index]*(1 - dindices[i]) + \
x[i, index + 1]*dindices[i]
return y.ravel()
示例6: jacobian_2d_numba
# 需要導入模塊: import numba [as 別名]
# 或者: from numba import prange [as 別名]
def jacobian_2d_numba(east, north, force_east, force_north, mindist, poisson, jac):
"Calculate the Jacobian matrix using numba to speed things up."
nforces = force_east.size
npoints = east.size
for i in numba.prange(npoints): # pylint: disable=not-an-iterable
for j in range(nforces):
green_ee, green_nn, green_ne = GREENS_FUNC_2D_JIT(
east[i] - force_east[j], north[i] - force_north[j], mindist, poisson
)
jac[i, j] = green_ee
jac[i + npoints, j + nforces] = green_nn
jac[i, j + nforces] = green_ne
jac[i + npoints, j] = green_ne # J is symmetric
return jac
# JIT compile the Greens functions for use in numba functions
示例7: _snn_imp
# 需要導入模塊: import numba [as 別名]
# 或者: from numba import prange [as 別名]
def _snn_imp(ind, ref_set_):
"""Internal function for fast snn calculation
Parameters
----------
ind : int
Indices return by kNN.
ref_set_ : int, optional (default=10)
specifies the number of shared nearest neighbors to create the
reference set. Note that ref_set must be smaller than n_neighbors.
"""
n = ind.shape[0]
_count = np.zeros(shape=(n, ref_set_), dtype=np.uint32)
for i in nb.prange(n):
temp = np.empty(n, dtype=np.uint32)
test_element_set = set(ind[i])
for j in nb.prange(n):
temp[j] = len(set(ind[j]).intersection(test_element_set))
temp[i] = np.iinfo(np.uint32).max
_count[i] = np.argsort(temp)[::-1][1:ref_set_ + 1]
return _count
示例8: min_max_parallel
# 需要導入模塊: import numba [as 別名]
# 或者: from numba import prange [as 別名]
def min_max_parallel(A):
"""
Standardise data by scaling data points by the sample minimum and maximum
such that all data points lie in the range 0 to 1, equivalent to sklearn
MinMaxScaler.
Uses explicit parallel loop; may offer improved performance in some
cases.
"""
assert A.ndim > 1
n = A.shape[1]
res = empty_like(A, dtype=np_float64)
for i in prange(n):
data_i = A[:, i]
data_min = np_min(data_i)
res[:, i] = (data_i - data_min) / (np_max(data_i) - data_min)
return res
示例9: demean_parallel
# 需要導入模塊: import numba [as 別名]
# 或者: from numba import prange [as 別名]
def demean_parallel(A):
"""
Subtract the mean from the supplied data column-wise.
Uses explicit parallel loop; may offer improved performance in some
cases.
"""
assert A.ndim > 1
n = A.shape[1]
res = empty_like(A, dtype=np_float64)
for i in prange(n):
data_i = A[:, i]
res[:, i] = data_i - mean(data_i)
return res
示例10: map_neighbors
# 需要導入模塊: import numba [as 別名]
# 或者: from numba import prange [as 別名]
def map_neighbors(indices, similarity, labels, top_k, pad_ind, pad_val):
m = indices.shape[0]
point_labels = np.full(
(m, top_k), pad_ind, dtype=np.int64)
point_label_sims = np.full(
(m, top_k), pad_val, dtype=np.float32)
for i in nb.prange(m):
unique_point_labels, point_label_sim = map_one(
labels[indices[i]], similarity[i], pad_ind)
if top_k < len(unique_point_labels):
top_indices = np.argsort(
point_label_sim)[-1 * top_k:][::-1]
point_labels[i] = unique_point_labels[top_indices]
point_label_sims[i] = point_label_sim[top_indices]
else:
point_labels[i, :len(unique_point_labels)] = unique_point_labels
point_label_sims[i, :len(unique_point_labels)] = point_label_sim
return point_labels, point_label_sims
示例11: numba_loop_sparse_dist_with_geometry
# 需要導入模塊: import numba [as 別名]
# 或者: from numba import prange [as 別名]
def numba_loop_sparse_dist_with_geometry(waveform, centers, possibles_cluster_idx, rms_waveform_channel,channel_adjacency):
nb_total_clus, width, nb_chan = centers.shape
nb_clus = possibles_cluster_idx.size
#rms_waveform_channel = np.sum(waveform**2, axis=0)#.astype('float32')
waveform_distance = np.zeros((nb_clus,), dtype=np.float32)
for clus in prange(len(possibles_cluster_idx)):
cluster_idx = possibles_cluster_idx[clus]
sum = 0
for c in channel_adjacency:
#~ if mask[cluster_idx, c]:
for s in range(width):
d = waveform[s, c] - centers[cluster_idx, s, c]
sum += d*d
#~ else:
#~ sum +=rms_waveform_channel[c]
waveform_distance[clus] = sum
return waveform_distance
示例12: numba_explore_shifts
# 需要導入模塊: import numba [as 別名]
# 或者: from numba import prange [as 別名]
def numba_explore_shifts(long_waveform, one_center, one_mask, maximum_jitter_shift):
width, nb_chan = one_center.shape
n = maximum_jitter_shift*2 +1
all_dist = np.zeros((n, ), dtype=np.float32)
for shift in prange(n):
sum = 0
for c in range(nb_chan):
if one_mask[c]:
for s in range(width):
d = long_waveform[shift+s, c] - one_center[s, c]
sum += d*d
all_dist[shift] = sum
return all_dist
示例13: peak_loop_plus
# 需要導入模塊: import numba [as 別名]
# 或者: from numba import prange [as 別名]
def peak_loop_plus(sigs, sig_center, mask_peaks, n_span, thresh, peak_sign, neighbours):
for chan in prange(sig_center.shape[1]):
for s in range(mask_peaks.shape[0]):
if not mask_peaks[s, chan]:
continue
for neighbour in neighbours[chan, :]:
if neighbour<0:
continue
for i in range(n_span):
if chan != neighbour:
mask_peaks[s, chan] &= sig_center[s, chan] >= sig_center[s, neighbour]
mask_peaks[s, chan] &= sig_center[s, chan] > sigs[s+i, neighbour]
mask_peaks[s, chan] &= sig_center[s, chan]>=sigs[n_span+s+i+1, neighbour]
if not mask_peaks[s, chan]:
break
if not mask_peaks[s, chan]:
break
return mask_peaks
示例14: peak_loop_minus
# 需要導入模塊: import numba [as 別名]
# 或者: from numba import prange [as 別名]
def peak_loop_minus(sigs, sig_center, mask_peaks, n_span, thresh, peak_sign, neighbours):
for chan in prange(sig_center.shape[1]):
for s in range(mask_peaks.shape[0]):
if not mask_peaks[s, chan]:
continue
for neighbour in neighbours[chan, :]:
if neighbour<0:
continue
for i in range(n_span):
if chan != neighbour:
mask_peaks[s, chan] &= sig_center[s, chan] <= sig_center[s, neighbour]
mask_peaks[s, chan] &= sig_center[s, chan] < sigs[s+i, neighbour]
mask_peaks[s, chan] &= sig_center[s, chan]<=sigs[n_span+s+i+1, neighbour]
if not mask_peaks[s, chan]:
break
if not mask_peaks[s, chan]:
break
return mask_peaks
示例15: generate_leaf_updates
# 需要導入模塊: import numba [as 別名]
# 或者: from numba import prange [as 別名]
def generate_leaf_updates(leaf_block, dist_thresholds, data, dist):
updates = [[(-1, -1, np.inf)] for i in range(leaf_block.shape[0])]
for n in numba.prange(leaf_block.shape[0]):
for i in range(leaf_block.shape[1]):
p = leaf_block[n, i]
if p < 0:
break
for j in range(i + 1, leaf_block.shape[1]):
q = leaf_block[n, j]
if q < 0:
break
d = dist(data[p], data[q])
if d < dist_thresholds[p] or d < dist_thresholds[q]:
updates[n].append((p, q, d))
return updates