本文整理匯總了Python中numba.cuda.to_device方法的典型用法代碼示例。如果您正苦於以下問題:Python cuda.to_device方法的具體用法?Python cuda.to_device怎麽用?Python cuda.to_device使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類numba.cuda
的用法示例。
在下文中一共展示了cuda.to_device方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: uniform
# 需要導入模塊: from numba import cuda [as 別名]
# 或者: from numba.cuda import to_device [as 別名]
def uniform(size, dtype=np.float, device=False):
'''Generate floating point random number sampled
from a uniform distribution
:param size: Number of samples.
:param dtype: np.float32 or np.float64.
:param device: Set to True to return a device array instead or numpy array.
:returns: A numpy array or a device array.
>>> from pyculib import rand
>>> rand.uniform(size=10)
array([...])
.. seealso:: :py:meth:`pyculib.rand.PRNG.uniform`
'''
ary = np.empty(size, dtype=dtype)
devary = cuda.to_device(ary, copy=False)
prng = _get_prng()
prng.uniform(devary, size)
if device:
return devary
else:
devary.copy_to_host(ary)
return ary
示例2: poisson
# 需要導入模塊: from numba import cuda [as 別名]
# 或者: from numba.cuda import to_device [as 別名]
def poisson(lmbd, size, device=False):
'''Generate int32 random number sampled
from a poisson distribution.
:param lmbda: Lambda of the distribution.
:param size: Number of samples
:param device: Set to True to return a device array instead or ndarray.
:returns: A numpy array or a device array.
>>> from pyculib import rand
>>> rand.poisson(lmbd=1, size=10)
array([...], dtype=uint32)
.. seealso:: :py:meth:`pyculib.rand.PRNG.poisson`
'''
ary = np.empty(size, dtype=np.uint32)
devary = cuda.to_device(ary, copy=False)
prng = _get_prng()
prng.poisson(devary, lmbd, size)
if device:
return devary
else:
devary.copy_to_host(ary)
return ary
示例3: Taxpy
# 需要導入模塊: from numba import cuda [as 別名]
# 或者: from numba.cuda import to_device [as 別名]
def Taxpy(self, fn, dtype):
from pyculib.blas.binding import cuBlas
alpha = 1.234
x = np.random.random(10).astype(dtype)
y = np.random.random(10).astype(dtype)
y0 = y.copy()
d_x = cuda.to_device(x)
d_y = cuda.to_device(y)
blas = cuBlas()
getattr(blas, fn)(x.size, alpha, d_x, 1, d_y, 1)
d_y.copy_to_host(y)
self.assertTrue(np.allclose(alpha * x + y0, y))
示例4: Trot
# 需要導入模塊: from numba import cuda [as 別名]
# 或者: from numba.cuda import to_device [as 別名]
def Trot(self, fn, dtype):
from pyculib.blas.binding import cuBlas
x = np.random.random(10).astype(dtype)
y = np.random.random(10).astype(dtype)
angle = 1.342
c = np.cos(angle)
s = np.sin(angle)
x0, y0 = c * x + s * y, -s * x + c * y
d_x = cuda.to_device(x)
d_y = cuda.to_device(y)
blas = cuBlas()
getattr(blas, fn)(x.size, d_x, 1, d_y, 1, c, s)
d_x.copy_to_host(x)
d_y.copy_to_host(y)
self.assertTrue(np.allclose(x, x0))
self.assertTrue(np.allclose(y, y0))
示例5: Trotm
# 需要導入模塊: from numba import cuda [as 別名]
# 或者: from numba.cuda import to_device [as 別名]
def Trotm(self, fn, dtype):
from pyculib.blas.binding import cuBlas
x = np.random.random(10).astype(dtype)
y = np.random.random(10).astype(dtype)
param = np.random.random(5).astype(dtype)
param[0] = -1.0
h11, h21, h12, h22 = param[1:].tolist()
x0, y0 = h11 * x + h12 * y, h21 * x + h22 * y
d_x = cuda.to_device(x)
d_y = cuda.to_device(y)
blas = cuBlas()
getattr(blas, fn)(x.size, d_x, 1, d_y, 1, param)
d_x.copy_to_host(x)
d_y.copy_to_host(y)
self.assertTrue(np.allclose(x, x0))
self.assertTrue(np.allclose(y, y0))
示例6: Tgbmv
# 需要導入模塊: from numba import cuda [as 別名]
# 或者: from numba.cuda import to_device [as 別名]
def Tgbmv(self, fn, dtype):
from pyculib.blas.binding import cuBlas
blas = cuBlas()
kl = 0
ku = 0
alpha = 1.
beta = 0.
A = np.array([[1, 0, 0],
[0, 2, 0],
[0, 0, 3]], order='F', dtype=dtype)
x = np.array([1, 2, 3], dtype=dtype)
y = np.array([1, 2, 3], dtype=dtype)
lda, n = A.shape
m = lda
y0 = y.copy()
dA = cuda.to_device(A)
dx = cuda.to_device(x)
dy = cuda.to_device(y)
getattr(blas, fn)('N', m, n, kl, ku, alpha, dA, lda, dx, 1, beta, dy, 1)
dy.copy_to_host(y)
self.assertFalse(all(y0 == y))
示例7: Tgemv
# 需要導入模塊: from numba import cuda [as 別名]
# 或者: from numba.cuda import to_device [as 別名]
def Tgemv(self, fn, dtype):
from pyculib.blas.binding import cuBlas
blas = cuBlas()
alpha = 1.
beta = 0.
A = np.array([[1, 2, 0],
[0, 3, 0],
[1, 0, 1]], order='F', dtype=dtype)
x = np.array([1, 2, 3], dtype=dtype)
y = np.array([1, 2, 3], dtype=dtype)
m, n = A.shape
lda = m
y0 = y.copy()
dA = cuda.to_device(A)
dx = cuda.to_device(x)
dy = cuda.to_device(y)
getattr(blas, fn)('N', m, n, alpha, dA, lda, dx, 1, beta, dy, 1)
dy.copy_to_host(y)
self.assertFalse(all(y0 == y))
示例8: Ttbmv
# 需要導入模塊: from numba import cuda [as 別名]
# 或者: from numba.cuda import to_device [as 別名]
def Ttbmv(self, fn, dtype):
from pyculib.blas.binding import cuBlas
A = np.array([[1, 2, 0],
[0, 3, 0],
[1, 0, 1]], order='F', dtype=dtype)
x = np.array([1, 2, 3], dtype=dtype)
dA = cuda.to_device(A)
dx = cuda.to_device(x)
blas = cuBlas()
uplo = 'U'
trans = 'N'
diag = False
n = 3
lda = n
x0 = x.copy()
inc = 1
k = 0
getattr(blas, fn)(uplo, trans, diag, n, k, dA, lda, dx, inc)
dx.copy_to_host(x)
self.assertFalse(all(x == x0))
示例9: Ttpmv
# 需要導入模塊: from numba import cuda [as 別名]
# 或者: from numba.cuda import to_device [as 別名]
def Ttpmv(self, fn, dtype):
from pyculib.blas.binding import cuBlas
AP = np.array([[1, 2, 0],
[0, 3, 0],
[1, 0, 1]], order='F', dtype=dtype)
x = np.array([1, 2, 3], dtype=dtype)
dAP = cuda.to_device(AP)
dx = cuda.to_device(x)
blas = cuBlas()
uplo = 'U'
trans = 'N'
diag = False
n = 3
x0 = x.copy()
inc = 1
getattr(blas, fn)(uplo, trans, diag, n, dAP, dx, inc)
dx.copy_to_host(x)
self.assertFalse(all(x == x0))
示例10: Ttrsv
# 需要導入模塊: from numba import cuda [as 別名]
# 或者: from numba.cuda import to_device [as 別名]
def Ttrsv(self, fn, dtype):
from pyculib.blas.binding import cuBlas
A = np.array([[1, 2, 0],
[0, 3, 0],
[1, 0, 1]], order='F', dtype=dtype)
x = np.array([1, 2, 3], dtype=dtype)
dA = cuda.to_device(A)
dx = cuda.to_device(x)
blas = cuBlas()
uplo = 'U'
trans = 'N'
diag = False
lda = n = 3
x0 = x.copy()
inc = 1
getattr(blas, fn)(uplo, trans, diag, n, dA, lda, dx, inc)
dx.copy_to_host(x)
self.assertFalse(all(x == x0))
示例11: _Ttpsv
# 需要導入模塊: from numba import cuda [as 別名]
# 或者: from numba.cuda import to_device [as 別名]
def _Ttpsv(self, fn, dtype):
from pyculib.blas.binding import cuBlas
A = np.array([[1, 2, 0],
[0, 3, 0],
[1, 0, 1]], order='F', dtype=dtype)
x = np.array([1, 2, 3], dtype=dtype)
dA = cuda.to_device(A)
dx = cuda.to_device(x)
blas = cuBlas()
uplo = 'U'
trans = 'N'
diag = False
n = 3
x0 = x.copy()
inc = 1
getattr(blas, fn)(uplo, trans, diag, n, dA, dx, inc)
dx.copy_to_host(x)
self.assertFalse(all(x == x0))
示例12: _Ttbsv
# 需要導入模塊: from numba import cuda [as 別名]
# 或者: from numba.cuda import to_device [as 別名]
def _Ttbsv(self, fn, dtype):
from pyculib.blas.binding import cuBlas
A = np.array([[1, 2, 0],
[0, 3, 0],
[1, 0, 1]], order='F', dtype=dtype)
x = np.array([1, 2, 3], dtype=dtype)
dA = cuda.to_device(A)
dx = cuda.to_device(x)
blas = cuBlas()
uplo = 'U'
trans = 'N'
diag = False
lda = n = 3
k = 0
x0 = x.copy()
inc = 1
getattr(blas, fn)(uplo, trans, diag, n, k, dA, lda, dx, inc)
dx.copy_to_host(x)
self.assertFalse(all(x == x0))
示例13: _Tsbmv
# 需要導入模塊: from numba import cuda [as 別名]
# 或者: from numba.cuda import to_device [as 別名]
def _Tsbmv(self, fn, dtype):
from pyculib.blas.binding import cuBlas
A = np.array([[1, 2, 0],
[0, 3, 0],
[1, 0, 1]], order='F', dtype=dtype)
x = np.array([1, 2, 3], dtype=dtype)
y = np.array([8, 2, 3], dtype=dtype)
dA = cuda.to_device(A)
dx = cuda.to_device(x)
dy = cuda.to_device(y)
alpha = 1.2
beta = .34
blas = cuBlas()
uplo = 'U'
lda = n = 3
k = 0
y0 = y.copy()
incx = incy = 1
getattr(blas, fn)(uplo, n, k, alpha, dA, lda, dx, incx, beta, dy, incy)
dy.copy_to_host(y)
self.assertFalse(all(y == y0))
示例14: _Tspmv
# 需要導入模塊: from numba import cuda [as 別名]
# 或者: from numba.cuda import to_device [as 別名]
def _Tspmv(self, fn, dtype):
from pyculib.blas.binding import cuBlas
AP = np.array([[1, 2, 0],
[0, 3, 0],
[1, 0, 1]], order='F', dtype=dtype)
x = np.array([1, 2, 3], dtype=dtype)
y = np.array([8, 2, 3], dtype=dtype)
dAP = cuda.to_device(AP)
dx = cuda.to_device(x)
dy = cuda.to_device(y)
alpha = 1.2
beta = .34
blas = cuBlas()
uplo = 'U'
n = 3
y0 = y.copy()
incx = incy = 1
getattr(blas, fn)(uplo, n, alpha, dAP, dx, incx, beta, dy, incy)
dy.copy_to_host(y)
self.assertFalse(all(y == y0))
示例15: _Tger
# 需要導入模塊: from numba import cuda [as 別名]
# 或者: from numba.cuda import to_device [as 別名]
def _Tger(self, fn, dtype):
from pyculib.blas.binding import cuBlas
A = np.array([[1, 2, 0],
[0, 3, 0],
[1, 0, 1]], order='F', dtype=dtype)
x = np.array([1, 2, 3], dtype=dtype)
y = np.array([8, 2, 3], dtype=dtype)
dA = cuda.to_device(A)
dx = cuda.to_device(x)
dy = cuda.to_device(y)
alpha = 1.2
blas = cuBlas()
lda = m = n = 3
A0 = A.copy()
incx = incy = 1
getattr(blas, fn)(m, n, alpha, dx, incx, dy, incy, dA, lda)
dA.copy_to_host(A)
self.assertFalse(np.all(A == A0))