當前位置: 首頁>>代碼示例>>Python>>正文


Python nn.BilinearInterpolation2d方法代碼示例

本文整理匯總了Python中nn.BilinearInterpolation2d方法的典型用法代碼示例。如果您正苦於以下問題:Python nn.BilinearInterpolation2d方法的具體用法?Python nn.BilinearInterpolation2d怎麽用?Python nn.BilinearInterpolation2d使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在nn的用法示例。


在下文中一共展示了nn.BilinearInterpolation2d方法的2個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: import nn [as 別名]
# 或者: from nn import BilinearInterpolation2d [as 別名]
def __init__(self, dim_in):
        super().__init__()
        self.upsample_heatmap = (cfg.KRCNN.UP_SCALE > 1)

        if cfg.KRCNN.USE_DECONV:
            # Apply ConvTranspose to the feature representation; results in 2x # upsampling
            self.deconv = nn.ConvTranspose2d(
                dim_in, cfg.KRCNN.DECONV_DIM, cfg.KRCNN.DECONV_KERNEL,
                2, padding=int(cfg.KRCNN.DECONV_KERNEL / 2) - 1)
            dim_in = cfg.KRCNN.DECONV_DIM

        if cfg.KRCNN.USE_DECONV_OUTPUT:
            # Use ConvTranspose to predict heatmaps; results in 2x upsampling
            self.classify = nn.ConvTranspose2d(
                dim_in, cfg.KRCNN.NUM_KEYPOINTS, cfg.KRCNN.DECONV_KERNEL,
                2, padding=int(cfg.KRCNN.DECONV_KERNEL / 2 - 1))
        else:
            # Use Conv to predict heatmaps; does no upsampling
            self.classify = nn.Conv2d(dim_in, cfg.KRCNN.NUM_KEYPOINTS, 1, 1, padding=0)

        if self.upsample_heatmap:
            # self.upsample = nn.UpsamplingBilinear2d(scale_factor=cfg.KRCNN.UP_SCALE)
            self.upsample = mynn.BilinearInterpolation2d(
                cfg.KRCNN.NUM_KEYPOINTS, cfg.KRCNN.NUM_KEYPOINTS, cfg.KRCNN.UP_SCALE)

        self._init_weights() 
開發者ID:roytseng-tw,項目名稱:Detectron.pytorch,代碼行數:28,代碼來源:keypoint_rcnn_heads.py

示例2: __init__

# 需要導入模塊: import nn [as 別名]
# 或者: from nn import BilinearInterpolation2d [as 別名]
def __init__(self, dim_in):
        super().__init__()
        self.dim_in = dim_in

        n_classes = cfg.MODEL.NUM_CLASSES if cfg.MRCNN.CLS_SPECIFIC_MASK else 1
        if cfg.MRCNN.USE_FC_OUTPUT:
            # Predict masks with a fully connected layer
            self.classify = nn.Linear(dim_in, n_classes * cfg.MRCNN.RESOLUTION**2)
        else:
            # Predict mask using Conv
            self.classify = nn.Conv2d(dim_in, n_classes, 1, 1, 0)
            if cfg.MRCNN.UPSAMPLE_RATIO > 1:
                self.upsample = mynn.BilinearInterpolation2d(
                    n_classes, n_classes, cfg.MRCNN.UPSAMPLE_RATIO)
        self._init_weights() 
開發者ID:roytseng-tw,項目名稱:Detectron.pytorch,代碼行數:17,代碼來源:mask_rcnn_heads.py


注:本文中的nn.BilinearInterpolation2d方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。