當前位置: 首頁>>代碼示例>>Python>>正文


Python nltk.tree方法代碼示例

本文整理匯總了Python中nltk.tree方法的典型用法代碼示例。如果您正苦於以下問題:Python nltk.tree方法的具體用法?Python nltk.tree怎麽用?Python nltk.tree使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在nltk的用法示例。


在下文中一共展示了nltk.tree方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: tree2conlltags

# 需要導入模塊: import nltk [as 別名]
# 或者: from nltk import tree [as 別名]
def tree2conlltags(t):
    """
    Return a list of 3-tuples containing ``(word, tag, IOB-tag)``.
    Convert a tree to the CoNLL IOB tag format.

    :param t: The tree to be converted.
    :type t: Tree
    :rtype: list(tuple)
    """

    tags = []
    for child in t:
        try:
            category = child.label()
            prefix = "B-"
            for contents in child:
                if isinstance(contents, Tree):
                    raise ValueError("Tree is too deeply nested to be printed in CoNLL format")
                tags.append((contents[0], contents[1], prefix+category))
                prefix = "I-"
        except AttributeError:
            tags.append((child[0], child[1], "O"))
    return tags 
開發者ID:rafasashi,項目名稱:razzy-spinner,代碼行數:25,代碼來源:util.py

示例2: ieer_headlines

# 需要導入模塊: import nltk [as 別名]
# 或者: from nltk import tree [as 別名]
def ieer_headlines():

    from nltk.corpus import ieer
    from nltk.tree import Tree
    
    print("IEER: First 20 Headlines")
    print("=" * 45)  
    
    trees = [(doc.docno, doc.headline) for file in ieer.fileids() for doc in ieer.parsed_docs(file)]
    for tree in trees[:20]:
        print()
        print("%s:\n%s" % tree)



#############################################
## Dutch CONLL2002: take_on_role(PER, ORG
############################################# 
開發者ID:rafasashi,項目名稱:razzy-spinner,代碼行數:20,代碼來源:relextract.py

示例3: tree2conlltags

# 需要導入模塊: import nltk [as 別名]
# 或者: from nltk import tree [as 別名]
def tree2conlltags(t):
    """
    Return a list of 3-tuples containing ``(word, tag, IOB-tag)``.
    Convert a tree to the CoNLL IOB tag format.

    :param t: The tree to be converted.
    :type t: Tree
    :rtype: list(tuple)
    """

    tags = []
    for child in t:
        try:
            category = child.node
            prefix = "B-"
            for contents in child:
                if isinstance(contents, Tree):
                    raise ValueError, "Tree is too deeply nested to be printed in CoNLL format"
                tags.append((contents[0], contents[1], prefix+category))
                prefix = "I-"
        except AttributeError:
            tags.append((child[0], child[1], "O"))
    return tags 
開發者ID:blackye,項目名稱:luscan-devel,代碼行數:25,代碼來源:util.py

示例4: _trace_production

# 需要導入模塊: import nltk [as 別名]
# 或者: from nltk import tree [as 別名]
def _trace_production(self, production, p, span, width):
        """
        Print trace output indicating that a given production has been
        applied at a given location.

        :param production: The production that has been applied
        :type production: Production
        :param p: The probability of the tree produced by the production.
        :type p: float
        :param span: The span of the production
        :type span: tuple
        :rtype: None
        """

        str = '|' + '.' * span[0]
        str += '=' * (span[1] - span[0])
        str += '.' * (width - span[1]) + '| '
        str += '%s' % production
        if self._trace > 2: str = '%-40s %12.10f ' % (str, p)

        print str 
開發者ID:blackye,項目名稱:luscan-devel,代碼行數:23,代碼來源:viterbi.py

示例5: ieer_headlines

# 需要導入模塊: import nltk [as 別名]
# 或者: from nltk import tree [as 別名]
def ieer_headlines():

    from nltk.corpus import ieer
    from nltk.tree import Tree

    print "IEER: First 20 Headlines"
    print "=" * 45

    trees = [doc.headline for file in ieer.fileids() for doc in ieer.parsed_docs(file)]
    for tree in trees[:20]:
        print
        print "%s:\n%s" % (doc.docno, tree)



#############################################
## Dutch CONLL2002: take_on_role(PER, ORG
############################################# 
開發者ID:blackye,項目名稱:luscan-devel,代碼行數:20,代碼來源:relextract.py

示例6: tree2conlltags

# 需要導入模塊: import nltk [as 別名]
# 或者: from nltk import tree [as 別名]
def tree2conlltags(t):
    """
    Return a list of 3-tuples containing ``(word, tag, IOB-tag)``.
    Convert a tree to the CoNLL IOB tag format.

    :param t: The tree to be converted.
    :type t: Tree
    :rtype: list(tuple)
    """

    tags = []
    for child in t:
        try:
            category = child.label()
            prefix = "B-"
            for contents in child:
                if isinstance(contents, Tree):
                    raise ValueError(
                        "Tree is too deeply nested to be printed in CoNLL format"
                    )
                tags.append((contents[0], contents[1], prefix + category))
                prefix = "I-"
        except AttributeError:
            tags.append((child[0], child[1], "O"))
    return tags 
開發者ID:V1EngineeringInc,項目名稱:V1EngineeringInc-Docs,代碼行數:27,代碼來源:util.py

示例7: ieer_headlines

# 需要導入模塊: import nltk [as 別名]
# 或者: from nltk import tree [as 別名]
def ieer_headlines():

    from nltk.corpus import ieer
    from nltk.tree import Tree

    print("IEER: First 20 Headlines")
    print("=" * 45)

    trees = [
        (doc.docno, doc.headline)
        for file in ieer.fileids()
        for doc in ieer.parsed_docs(file)
    ]
    for tree in trees[:20]:
        print()
        print("%s:\n%s" % tree)


#############################################
## Dutch CONLL2002: take_on_role(PER, ORG
############################################# 
開發者ID:V1EngineeringInc,項目名稱:V1EngineeringInc-Docs,代碼行數:23,代碼來源:relextract.py

示例8: accuracy

# 需要導入模塊: import nltk [as 別名]
# 或者: from nltk import tree [as 別名]
def accuracy(chunker, gold):
    """
    Score the accuracy of the chunker against the gold standard.
    Strip the chunk information from the gold standard and rechunk it using
    the chunker, then compute the accuracy score.

    :type chunker: ChunkParserI
    :param chunker: The chunker being evaluated.
    :type gold: tree
    :param gold: The chunk structures to score the chunker on.
    :rtype: float
    """

    gold_tags = []
    test_tags = []
    for gold_tree in gold:
        test_tree = chunker.parse(gold_tree.flatten())
        gold_tags += tree2conlltags(gold_tree)
        test_tags += tree2conlltags(test_tree)

#    print 'GOLD:', gold_tags[:50]
#    print 'TEST:', test_tags[:50]
    return _accuracy(gold_tags, test_tags)


# Patched for increased performance by Yoav Goldberg <yoavg@cs.bgu.ac.il>, 2006-01-13
#  -- statistics are evaluated only on demand, instead of at every sentence evaluation
#
# SB: use nltk.metrics for precision/recall scoring?
# 
開發者ID:rafasashi,項目名稱:razzy-spinner,代碼行數:32,代碼來源:util.py

示例9: conlltags2tree

# 需要導入模塊: import nltk [as 別名]
# 或者: from nltk import tree [as 別名]
def conlltags2tree(sentence, chunk_types=('NP','PP','VP'),
                   root_label='S', strict=False):
    """
    Convert the CoNLL IOB format to a tree.
    """
    tree = Tree(root_label, [])
    for (word, postag, chunktag) in sentence:
        if chunktag is None:
            if strict:
                raise ValueError("Bad conll tag sequence")
            else:
                # Treat as O
                tree.append((word,postag))
        elif chunktag.startswith('B-'):
            tree.append(Tree(chunktag[2:], [(word,postag)]))
        elif chunktag.startswith('I-'):
            if (len(tree)==0 or not isinstance(tree[-1], Tree) or
                tree[-1].label() != chunktag[2:]):
                if strict:
                    raise ValueError("Bad conll tag sequence")
                else:
                    # Treat as B-*
                    tree.append(Tree(chunktag[2:], [(word,postag)]))
            else:
                tree[-1].append((word,postag))
        elif chunktag == 'O':
            tree.append((word,postag))
        else:
            raise ValueError("Bad conll tag %r" % chunktag)
    return tree 
開發者ID:rafasashi,項目名稱:razzy-spinner,代碼行數:32,代碼來源:util.py

示例10: _untag

# 需要導入模塊: import nltk [as 別名]
# 或者: from nltk import tree [as 別名]
def _untag(self, tree):
        for i, child in enumerate(tree):
            if isinstance(child, Tree):
                self._untag(child)
            elif isinstance(child, tuple):
                tree[i] = child[0]
            else:
                raise ValueError('expected child to be Tree or tuple')
        return tree 
開發者ID:rafasashi,項目名稱:razzy-spinner,代碼行數:11,代碼來源:chunked.py

示例11: tree2semi_rel

# 需要導入模塊: import nltk [as 別名]
# 或者: from nltk import tree [as 別名]
def tree2semi_rel(tree):
    """
    Group a chunk structure into a list of 'semi-relations' of the form (list(str), ``Tree``). 

    In order to facilitate the construction of (``Tree``, string, ``Tree``) triples, this
    identifies pairs whose first member is a list (possibly empty) of terminal
    strings, and whose second member is a ``Tree`` of the form (NE_label, terminals).

    :param tree: a chunk tree
    :return: a list of pairs (list(str), ``Tree``)
    :rtype: list of tuple
    """

    from nltk.tree import Tree

    semi_rels = []
    semi_rel = [[], None]

    for dtr in tree:
        if not isinstance(dtr, Tree):
            semi_rel[0].append(dtr)
        else:
            # dtr is a Tree
            semi_rel[1] = dtr
            semi_rels.append(semi_rel)
            semi_rel = [[], None]
    return semi_rels 
開發者ID:rafasashi,項目名稱:razzy-spinner,代碼行數:29,代碼來源:relextract.py

示例12: get_object

# 需要導入模塊: import nltk [as 別名]
# 或者: from nltk import tree [as 別名]
def get_object(self, sub_tree):
        """
        Returns an Object with all attributes of an object
        """
        siblings = self.pred_verb_phrase_siblings
        Object = None
        for each_tree in sub_tree:
            if each_tree.label() in ["NP", "PP"]:
                sub_nodes = each_tree.subtrees()
                sub_nodes = [each for each in sub_nodes if each.pos()]

                for each in sub_nodes:
                    if each.label() in self.noun_types:
                        Object = each.leaves()
                        break
                break
            else:
                sub_nodes = each_tree.subtrees()
                sub_nodes = [each for each in sub_nodes if each.pos()]
                for each in sub_nodes:
                    if each.label() in self.adjective_types:
                        Object = each.leaves()
                        break
                # Get first noun in the tree
        self.pred_verb_phrase_siblings = None
        return {'object': Object} 
開發者ID:klintan,項目名稱:py-nltk-svo,代碼行數:28,代碼來源:svo.py

示例13: conlltags2tree

# 需要導入模塊: import nltk [as 別名]
# 或者: from nltk import tree [as 別名]
def conlltags2tree(sentence, chunk_types=('NP','PP','VP'),
                   top_node='S', strict=False):
    """
    Convert the CoNLL IOB format to a tree.
    """
    tree = Tree(top_node, [])
    for (word, postag, chunktag) in sentence:
        if chunktag is None:
            if strict:
                raise ValueError("Bad conll tag sequence")
            else:
                # Treat as O
                tree.append((word,postag))
        elif chunktag.startswith('B-'):
            tree.append(Tree(chunktag[2:], [(word,postag)]))
        elif chunktag.startswith('I-'):
            if (len(tree)==0 or not isinstance(tree[-1], Tree) or
                tree[-1].node != chunktag[2:]):
                if strict:
                    raise ValueError("Bad conll tag sequence")
                else:
                    # Treat as B-*
                    tree.append(Tree(chunktag[2:], [(word,postag)]))
            else:
                tree[-1].append((word,postag))
        elif chunktag == 'O':
            tree.append((word,postag))
        else:
            raise ValueError("Bad conll tag %r" % chunktag)
    return tree 
開發者ID:blackye,項目名稱:luscan-devel,代碼行數:32,代碼來源:util.py

示例14: parse

# 需要導入模塊: import nltk [as 別名]
# 或者: from nltk import tree [as 別名]
def parse(self, tokens):
        # Inherit docs from ParserI

        tokens = list(tokens)
        self._grammar.check_coverage(tokens)

        # The most likely constituent table.  This table specifies the
        # most likely constituent for a given span and type.
        # Constituents can be either Trees or tokens.  For Trees,
        # the "type" is the Nonterminal for the tree's root node
        # value.  For Tokens, the "type" is the token's type.
        # The table is stored as a dictionary, since it is sparse.
        constituents = {}

        # Initialize the constituents dictionary with the words from
        # the text.
        if self._trace: print ('Inserting tokens into the most likely'+
                               ' constituents table...')
        for index in range(len(tokens)):
            token = tokens[index]
            constituents[index,index+1,token] = token
            if self._trace > 1:
                self._trace_lexical_insertion(token, index, len(tokens))

        # Consider each span of length 1, 2, ..., n; and add any trees
        # that might cover that span to the constituents dictionary.
        for length in range(1, len(tokens)+1):
            if self._trace:
                print ('Finding the most likely constituents'+
                       ' spanning %d text elements...' % length)
            for start in range(len(tokens)-length+1):
                span = (start, start+length)
                self._add_constituents_spanning(span, constituents,
                                                tokens)

        # Return the tree that spans the entire text & have the right cat
        return constituents.get((0, len(tokens), self._grammar.start())) 
開發者ID:blackye,項目名稱:luscan-devel,代碼行數:39,代碼來源:viterbi.py

示例15: _find_instantiations

# 需要導入模塊: import nltk [as 別名]
# 或者: from nltk import tree [as 別名]
def _find_instantiations(self, span, constituents):
        """
        :return: a list of the production instantiations that cover a
            given span of the text.  A "production instantiation" is
            a tuple containing a production and a list of children,
            where the production's right hand side matches the list of
            children; and the children cover ``span``.  :rtype: list
            of ``pair`` of ``Production``, (list of
            (``ProbabilisticTree`` or token.

        :type span: tuple(int, int)
        :param span: The section of the text for which we are
            trying to find production instantiations.  The span is
            specified as a pair of integers, where the first integer
            is the index of the first token that should be covered by
            the production instantiation; and the second integer is
            the index of the first token that should not be covered by
            the production instantiation.
        :type constituents: dict(tuple(int,int,Nonterminal) -> ProbabilisticToken or ProbabilisticTree)
        :param constituents: The most likely constituents table.  This
            table records the most probable tree representation for
            any given span and node value.  See the module
            documentation for more information.
        """
        rv = []
        for production in self._grammar.productions():
            childlists = self._match_rhs(production.rhs(), span, constituents)

            for childlist in childlists:
                rv.append( (production, childlist) )
        return rv 
開發者ID:blackye,項目名稱:luscan-devel,代碼行數:33,代碼來源:viterbi.py


注:本文中的nltk.tree方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。