當前位置: 首頁>>代碼示例>>Python>>正文


Python bleu_score.corpus_bleu方法代碼示例

本文整理匯總了Python中nltk.translate.bleu_score.corpus_bleu方法的典型用法代碼示例。如果您正苦於以下問題:Python bleu_score.corpus_bleu方法的具體用法?Python bleu_score.corpus_bleu怎麽用?Python bleu_score.corpus_bleu使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在nltk.translate.bleu_score的用法示例。


在下文中一共展示了bleu_score.corpus_bleu方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: get_report

# 需要導入模塊: from nltk.translate import bleu_score [as 別名]
# 或者: from nltk.translate.bleu_score import corpus_bleu [as 別名]
def get_report(self):
        tokenize = get_tokenize()
        print('Generate report for {} samples'.format(len(self.hyps)))
        refs, hyps = [], []
        for label, hyp in zip(self.labels, self.hyps):
            # label = label.replace(EOS, '')
            # hyp = hyp.replace(EOS, '')
            # ref_tokens = tokenize(label)[1:]
            # hyp_tokens = tokenize(hyp)[1:]
            ref_tokens = tokenize(label)
            hyp_tokens = tokenize(hyp)
            refs.append([ref_tokens])
            hyps.append(hyp_tokens)
        bleu = corpus_bleu(refs, hyps, smoothing_function=SmoothingFunction().method1)
        report = '\n===== BLEU = %f =====\n' % (bleu,)
        return '\n===== REPORT FOR DATASET {} ====={}'.format(self.data_name, report) 
開發者ID:ConvLab,項目名稱:ConvLab,代碼行數:18,代碼來源:evaluators.py

示例2: quora_read

# 需要導入模塊: from nltk.translate import bleu_score [as 別名]
# 或者: from nltk.translate.bleu_score import corpus_bleu [as 別名]
def quora_read(file_path, bleu_baseline=False):
  """Read the quora dataset"""
  print("Reading quora raw data .. ")
  print("  data path: %s" % file_path)
  with open(file_path) as fd:
    lines = fd.readlines()
  sentence_sets = []
  for l in tqdm(lines):
    p0, p1 = l[:-1].lower().split("\t")
    sentence_sets.append([word_tokenize(p0), word_tokenize(p1)])

  if(bleu_baseline):
    print("calculating bleu ... ")
    hypothesis = [s[0] for s in sentence_sets]
    references = [s[1:] for s in sentence_sets]
    bleu = corpus_bleu(references, hypothesis)
    print("bleu on the training set: %.4f" % bleu)
  return sentence_sets 
開發者ID:FranxYao,項目名稱:dgm_latent_bow,代碼行數:20,代碼來源:data_utils.py

示例3: __call__

# 需要導入模塊: from nltk.translate import bleu_score [as 別名]
# 或者: from nltk.translate.bleu_score import corpus_bleu [as 別名]
def __call__(self, trainer):
        device = self.device

        with chainer.no_backprop_mode():
            references = []
            hypotheses = []
            for i in range(0, len(self.test_data), self.batch):
                sources, targets = zip(*self.test_data[i:i + self.batch])
                references.extend([[t.tolist()] for t in targets])

                sources = [device.send(x) for x in sources]
                ys = [y.tolist()
                      for y in self.model.translate(sources, self.max_length)]
                hypotheses.extend(ys)

        bleu = bleu_score.corpus_bleu(
            references, hypotheses,
            smoothing_function=bleu_score.SmoothingFunction().method1)
        chainer.report({self.key: bleu}) 
開發者ID:chainer,項目名稱:chainer,代碼行數:21,代碼來源:seq2seq.py

示例4: __call__

# 需要導入模塊: from nltk.translate import bleu_score [as 別名]
# 或者: from nltk.translate.bleu_score import corpus_bleu [as 別名]
def __call__(self, trainer):
        with chainer.no_backprop_mode():
            references = []
            hypotheses = []
            for i in range(0, len(self.test_data), self.batch):
                sources, targets = zip(*self.test_data[i:i + self.batch])
                references.extend([[t.tolist()] for t in targets])

                sources = [
                    chainer.dataset.to_device(self.device, x) for x in sources]
                ys = [y.tolist()
                      for y in self.model.translate(sources, self.max_length)]
                hypotheses.extend(ys)

        bleu = bleu_score.corpus_bleu(
            references, hypotheses,
            smoothing_function=bleu_score.SmoothingFunction().method1)
        reporter.report({self.key: bleu}) 
開發者ID:chainer,項目名稱:chainer,代碼行數:20,代碼來源:seq2seq.py

示例5: __call__

# 需要導入模塊: from nltk.translate import bleu_score [as 別名]
# 或者: from nltk.translate.bleu_score import corpus_bleu [as 別名]
def __call__(self, trainer):
        print('## Calculate BLEU')
        with chainer.no_backprop_mode():
            with chainer.using_config('train', False):
                references = []
                hypotheses = []
                for i in range(0, len(self.test_data), self.batch):
                    sources, targets = zip(*self.test_data[i:i + self.batch])
                    references.extend([[t.tolist()] for t in targets])

                    sources = [
                        chainer.dataset.to_device(self.device, x) for x in sources]
                    ys = [y.tolist()
                          for y in self.model.translate(sources, self.max_length)]
                    hypotheses.extend(ys)

        bleu = bleu_score.corpus_bleu(
            references, hypotheses,
            smoothing_function=bleu_score.SmoothingFunction().method1) * 100
        print('BLEU:', bleu)
        reporter.report({self.key: bleu}) 
開發者ID:soskek,項目名稱:convolutional_seq2seq,代碼行數:23,代碼來源:seq2seq.py

示例6: forward

# 需要導入模塊: from nltk.translate import bleu_score [as 別名]
# 或者: from nltk.translate.bleu_score import corpus_bleu [as 別名]
def forward(self, trainer):
        with chainer.no_backprop_mode():
            references = []
            hypotheses = []
            for i in range(0, len(self.test_data), self.batch):
                sources, targets = zip(*self.test_data[i:i + self.batch])
                references.extend([[t.tolist()] for t in targets])

                sources = [
                    chainer.dataset.to_device(self.device, x) for x in sources]
                ys = [y.tolist()
                      for y in self.model.translate(sources, self.max_length)]
                hypotheses.extend(ys)

        bleu = bleu_score.corpus_bleu(
            references, hypotheses,
            smoothing_function=bleu_score.SmoothingFunction().method1)
        chainer.report({self.key: bleu}) 
開發者ID:pfnet,項目名稱:pfio,代碼行數:20,代碼來源:seq2seq_chainerio.py

示例7: calculate_bleu_scores

# 需要導入模塊: from nltk.translate import bleu_score [as 別名]
# 或者: from nltk.translate.bleu_score import corpus_bleu [as 別名]
def calculate_bleu_scores(references, hypotheses):
    """
    Calculates BLEU 1-4 scores based on NLTK functionality

    Args:
        references: List of reference sentences
        hypotheses: List of generated sentences

    Returns:
        bleu_1, bleu_2, bleu_3, bleu_4: BLEU scores

    """
    bleu_1 = np.round(100 * corpus_bleu(references, hypotheses, weights=(1.0, 0., 0., 0.)), decimals=2)
    bleu_2 = np.round(100 * corpus_bleu(references, hypotheses, weights=(0.50, 0.50, 0., 0.)), decimals=2)
    bleu_3 = np.round(100 * corpus_bleu(references, hypotheses, weights=(0.34, 0.33, 0.33, 0.)), decimals=2)
    bleu_4 = np.round(100 * corpus_bleu(references, hypotheses, weights=(0.25, 0.25, 0.25, 0.25)), decimals=2)
    return bleu_1, bleu_2, bleu_3, bleu_4 
開發者ID:HareeshBahuleyan,項目名稱:tf-var-attention,代碼行數:19,代碼來源:eval_utils.py

示例8: computeGroupBLEU

# 需要導入模塊: from nltk.translate import bleu_score [as 別名]
# 或者: from nltk.translate.bleu_score import corpus_bleu [as 別名]
def computeGroupBLEU(outputs, targets, tokenizer=None, bra=10, maxmaxlen=80):
    if tokenizer is None:
        tokenizer = revtok.tokenize

    outputs = [tokenizer(o) for o in outputs]
    targets = [tokenizer(t) for t in targets]
    maxlens = max([len(t) for t in targets])
    print(maxlens)
    maxlens = min([maxlens, maxmaxlen])
    nums = int(np.ceil(maxlens / bra))
    outputs_buckets = [[] for _ in range(nums)]
    targets_buckets = [[] for _ in range(nums)]
    for o, t in zip(outputs, targets):
        idx = len(o) // bra
        if idx >= len(outputs_buckets):
            idx = -1
        outputs_buckets[idx] += [o]
        targets_buckets[idx] += [t]

    for k in range(nums):
        print(corpus_bleu([[t] for t in targets_buckets[k]], [o for o in outputs_buckets[k]], emulate_multibleu=True))


# load the dataset + reversible tokenization 
開發者ID:salesforce,項目名稱:nonauto-nmt,代碼行數:26,代碼來源:utils.py

示例9: oracle_bleu

# 需要導入模塊: from nltk.translate import bleu_score [as 別名]
# 或者: from nltk.translate.bleu_score import corpus_bleu [as 別名]
def oracle_bleu(hyp_list, ref, n_process=4):

    assert len(set([len(h) for h in hyp_list])) == 1

    all_hyp_sentence_bleu_list = [get_sent_bleu_list(hyp, ref, n_process=n_process)
                                  for hyp in hyp_list]

    if n_process > len(hyp_list[0]):
        n_process = len(hyp_list[0])

    with Pool(n_process) as pool:
        max_hyp_index_list = list(tqdm(pool.imap(np.argmax, zip(*all_hyp_sentence_bleu_list)),
                                       total=len(all_hyp_sentence_bleu_list)))

    best_hyp_list = []
    for i, max_hyp_index in enumerate(max_hyp_index_list):
        best_hyp = hyp_list[max_hyp_index][i]
        best_hyp_list.append(best_hyp)

    return corpus_bleu([[r] for r in ref], best_hyp_list, smoothing_function=cm.method2) 
開發者ID:clovaai,項目名稱:FocusSeq2Seq,代碼行數:22,代碼來源:bleu.py

示例10: bleu_scorer

# 需要導入模塊: from nltk.translate import bleu_score [as 別名]
# 或者: from nltk.translate.bleu_score import corpus_bleu [as 別名]
def bleu_scorer(ref, hyp, script='default'):
    refsend = []
    for i in range(len(ref)):
        refsi = []
        for j in range(len(ref[i])):
            refsi.append(ref[i][j].split())
        refsend.append(refsi)

    gensend = []
    for i in range(len(hyp)):
        gensend.append(hyp[i].split())

    if script == 'nltk':
         metrics = corpus_bleu(refsend, gensend)
         return [metrics]

    metrics = compute_bleu(refsend, gensend)
    return metrics 
開發者ID:malllabiisc,項目名稱:DiPS,代碼行數:20,代碼來源:helper.py

示例11: bleu_so_far

# 需要導入模塊: from nltk.translate import bleu_score [as 別名]
# 或者: from nltk.translate.bleu_score import corpus_bleu [as 別名]
def bleu_so_far(refs, preds):
    Ba = corpus_bleu(refs, preds)
    B1 = corpus_bleu(refs, preds, weights=(1,0,0,0))
    B2 = corpus_bleu(refs, preds, weights=(0,1,0,0))
    B3 = corpus_bleu(refs, preds, weights=(0,0,1,0))
    B4 = corpus_bleu(refs, preds, weights=(0,0,0,1))

    Ba = round(Ba * 100, 2)
    B1 = round(B1 * 100, 2)
    B2 = round(B2 * 100, 2)
    B3 = round(B3 * 100, 2)
    B4 = round(B4 * 100, 2)

    ret = ''
    ret += ('for %s functions\n' % (len(preds)))
    ret += ('Ba %s\n' % (Ba))
    ret += ('B1 %s\n' % (B1))
    ret += ('B2 %s\n' % (B2))
    ret += ('B3 %s\n' % (B3))
    ret += ('B4 %s\n' % (B4))
    
    return ret 
開發者ID:mcmillco,項目名稱:funcom,代碼行數:24,代碼來源:bleu.py

示例12: calc_metrics

# 需要導入模塊: from nltk.translate import bleu_score [as 別名]
# 或者: from nltk.translate.bleu_score import corpus_bleu [as 別名]
def calc_metrics(refs, hyps, language, metric="all", meteor_jar=None):
    metrics = dict()
    metrics["count"] = len(hyps)
    metrics["ref_example"] = refs[-1]
    metrics["hyp_example"] = hyps[-1]
    many_refs = [[r] if r is not list else r for r in refs]
    if metric in ("bleu", "all"):
        metrics["bleu"] = corpus_bleu(many_refs, hyps)
    if metric in ("rouge", "all"):
        rouge = Rouge()
        scores = rouge.get_scores(hyps, refs, avg=True)
        metrics.update(scores)
    if metric in ("meteor", "all") and meteor_jar is not None and os.path.exists(meteor_jar):
        meteor = Meteor(meteor_jar, language=language)
        metrics["meteor"] = meteor.compute_score(hyps, many_refs)
    if metric in ("duplicate_ngrams", "all"):
        metrics["duplicate_ngrams"] = dict()
        metrics["duplicate_ngrams"].update(calc_duplicate_n_grams_rate(hyps))
    return metrics 
開發者ID:IlyaGusev,項目名稱:summarus,代碼行數:21,代碼來源:metrics.py

示例13: test_corpus_bleu_with_bad_sentence

# 需要導入模塊: from nltk.translate import bleu_score [as 別名]
# 或者: from nltk.translate.bleu_score import corpus_bleu [as 別名]
def test_corpus_bleu_with_bad_sentence(self):
        hyp = "Teo S yb , oe uNb , R , T t , , t Tue Ar saln S , , 5istsi l , 5oe R ulO sae oR R"
        ref = str(
            "Their tasks include changing a pump on the faulty stokehold ."
            "Likewise , two species that are very similar in morphology "
            "were distinguished using genetics ."
        )
        references = [[ref.split()]]
        hypotheses = [hyp.split()]
        try:  # Check that the warning is raised since no. of 2-grams < 0.
            with self.assertWarns(UserWarning):
                # Verify that the BLEU output is undesired since no. of 2-grams < 0.
                self.assertAlmostEqual(
                    corpus_bleu(references, hypotheses), 0.0, places=4
                )
        except AttributeError:  # unittest.TestCase.assertWarns is only supported in Python >= 3.2.
            self.assertAlmostEqual(corpus_bleu(references, hypotheses), 0.0, places=4) 
開發者ID:V1EngineeringInc,項目名稱:V1EngineeringInc-Docs,代碼行數:19,代碼來源:test_bleu.py

示例14: evaluate_model

# 需要導入模塊: from nltk.translate import bleu_score [as 別名]
# 或者: from nltk.translate.bleu_score import corpus_bleu [as 別名]
def evaluate_model(model, images, captions, tokenizer, max_length):
	actual, predicted = list(), list()
	for image_id, caption_list in tqdm(captions.items()):
		yhat = generate_caption(model, tokenizer, images[image_id], max_length)
		ground_truth = [caption.split() for caption in caption_list]
		actual.append(ground_truth)
		predicted.append(yhat.split())
	print('BLEU Scores :')
	print('A perfect match results in a score of 1.0, whereas a perfect mismatch results in a score of 0.0.')
	print('BLEU-1: %f' % corpus_bleu(actual, predicted, weights=(1.0, 0, 0, 0)))
	print('BLEU-2: %f' % corpus_bleu(actual, predicted, weights=(0.5, 0.5, 0, 0)))
	print('BLEU-3: %f' % corpus_bleu(actual, predicted, weights=(0.3, 0.3, 0.3, 0)))
	print('BLEU-4: %f' % corpus_bleu(actual, predicted, weights=(0.25, 0.25, 0.25, 0.25))) 
開發者ID:dabasajay,項目名稱:Image-Caption-Generator,代碼行數:15,代碼來源:model.py

示例15: evaluate_model_beam_search

# 需要導入模塊: from nltk.translate import bleu_score [as 別名]
# 或者: from nltk.translate.bleu_score import corpus_bleu [as 別名]
def evaluate_model_beam_search(model, images, captions, tokenizer, max_length, beam_index=3):
	actual, predicted = list(), list()
	for image_id, caption_list in tqdm(captions.items()):
		yhat = generate_caption_beam_search(model, tokenizer, images[image_id], max_length, beam_index=beam_index)
		ground_truth = [caption.split() for caption in caption_list]
		actual.append(ground_truth)
		predicted.append(yhat.split())
	print('BLEU Scores :')
	print('A perfect match results in a score of 1.0, whereas a perfect mismatch results in a score of 0.0.')
	print('BLEU-1: %f' % corpus_bleu(actual, predicted, weights=(1.0, 0, 0, 0)))
	print('BLEU-2: %f' % corpus_bleu(actual, predicted, weights=(0.5, 0.5, 0, 0)))
	print('BLEU-3: %f' % corpus_bleu(actual, predicted, weights=(0.3, 0.3, 0.3, 0)))
	print('BLEU-4: %f' % corpus_bleu(actual, predicted, weights=(0.25, 0.25, 0.25, 0.25))) 
開發者ID:dabasajay,項目名稱:Image-Caption-Generator,代碼行數:15,代碼來源:model.py


注:本文中的nltk.translate.bleu_score.corpus_bleu方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。