當前位置: 首頁>>代碼示例>>Python>>正文


Python bleu_score.SmoothingFunction方法代碼示例

本文整理匯總了Python中nltk.translate.bleu_score.SmoothingFunction方法的典型用法代碼示例。如果您正苦於以下問題:Python bleu_score.SmoothingFunction方法的具體用法?Python bleu_score.SmoothingFunction怎麽用?Python bleu_score.SmoothingFunction使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在nltk.translate.bleu_score的用法示例。


在下文中一共展示了bleu_score.SmoothingFunction方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: compute

# 需要導入模塊: from nltk.translate import bleu_score [as 別名]
# 或者: from nltk.translate.bleu_score import SmoothingFunction [as 別名]
def compute(guess: str, answers: List[str], k: int = 4) -> Optional['BleuMetric']:
        """
        Compute approximate BLEU score between guess and a set of answers.
        """
        if nltkbleu is None:
            # bleu library not installed, just return a default value
            return None
        # Warning: BLEU calculation *should* include proper tokenization and
        # punctuation etc. We're using the normalize_answer for everything though,
        # so we're over-estimating our BLEU scores.  Also note that NLTK's bleu is
        # going to be slower than fairseq's (which is written in C), but fairseq's
        # requires that everything be in arrays of ints (i.e. as tensors). NLTK's
        # works with strings, which is better suited for this module.
        weights = [1 / k for _ in range(k)]
        score = nltkbleu.sentence_bleu(
            [normalize_answer(a).split(" ") for a in answers],
            normalize_answer(guess).split(" "),
            smoothing_function=nltkbleu.SmoothingFunction(epsilon=1e-12).method1,
            weights=weights,
        )
        return BleuMetric(score) 
開發者ID:facebookresearch,項目名稱:ParlAI,代碼行數:23,代碼來源:metrics.py

示例2: get_report

# 需要導入模塊: from nltk.translate import bleu_score [as 別名]
# 或者: from nltk.translate.bleu_score import SmoothingFunction [as 別名]
def get_report(self):
        tokenize = get_tokenize()
        print('Generate report for {} samples'.format(len(self.hyps)))
        refs, hyps = [], []
        for label, hyp in zip(self.labels, self.hyps):
            # label = label.replace(EOS, '')
            # hyp = hyp.replace(EOS, '')
            # ref_tokens = tokenize(label)[1:]
            # hyp_tokens = tokenize(hyp)[1:]
            ref_tokens = tokenize(label)
            hyp_tokens = tokenize(hyp)
            refs.append([ref_tokens])
            hyps.append(hyp_tokens)
        bleu = corpus_bleu(refs, hyps, smoothing_function=SmoothingFunction().method1)
        report = '\n===== BLEU = %f =====\n' % (bleu,)
        return '\n===== REPORT FOR DATASET {} ====={}'.format(self.data_name, report) 
開發者ID:ConvLab,項目名稱:ConvLab,代碼行數:18,代碼來源:evaluators.py

示例3: bleu

# 需要導入模塊: from nltk.translate import bleu_score [as 別名]
# 或者: from nltk.translate.bleu_score import SmoothingFunction [as 別名]
def bleu(answer_file, standard_answer_file):
    rf_answer = open(answer_file, 'r', "utf-8")
    rf_standard_answer = open(standard_answer_file, 'r', "utf-8")
    answer_lines = rf_answer.readlines()
    standard_answer_lines = rf_standard_answer.readlines()
    # compute score
    scores = []
    for i in range(len(answer_lines)):
        candidate = list(answer_lines[i].strip())
        each_score = 0
        for j in range(10):
            references = []
            standard_answer_line = standard_answer_lines[i * 11 + j].strip().split('\t')
            references.append(list(standard_answer_line[0].strip()))
            standard_score = standard_answer_line[1]
            bleu_score = sentence_bleu(references, candidate, weights=(0.35, 0.45, 0.1, 0.1),
                                       smoothing_function=SmoothingFunction().method1)
            each_score = bleu_score * float(standard_score) + each_score
        scores.append(each_score / 10)
    rf_answer.close()
    rf_standard_answer.close()
    score_final = sum(scores) / float(len(answer_lines))
    precision_score = round(score_final, 6)
    return precision_score 
開發者ID:shibing624,項目名稱:dialogbot,代碼行數:26,代碼來源:bleu.py

示例4: __call__

# 需要導入模塊: from nltk.translate import bleu_score [as 別名]
# 或者: from nltk.translate.bleu_score import SmoothingFunction [as 別名]
def __call__(self, trainer):
        device = self.device

        with chainer.no_backprop_mode():
            references = []
            hypotheses = []
            for i in range(0, len(self.test_data), self.batch):
                sources, targets = zip(*self.test_data[i:i + self.batch])
                references.extend([[t.tolist()] for t in targets])

                sources = [device.send(x) for x in sources]
                ys = [y.tolist()
                      for y in self.model.translate(sources, self.max_length)]
                hypotheses.extend(ys)

        bleu = bleu_score.corpus_bleu(
            references, hypotheses,
            smoothing_function=bleu_score.SmoothingFunction().method1)
        chainer.report({self.key: bleu}) 
開發者ID:chainer,項目名稱:chainer,代碼行數:21,代碼來源:seq2seq.py

示例5: __call__

# 需要導入模塊: from nltk.translate import bleu_score [as 別名]
# 或者: from nltk.translate.bleu_score import SmoothingFunction [as 別名]
def __call__(self, trainer):
        with chainer.no_backprop_mode():
            references = []
            hypotheses = []
            for i in range(0, len(self.test_data), self.batch):
                sources, targets = zip(*self.test_data[i:i + self.batch])
                references.extend([[t.tolist()] for t in targets])

                sources = [
                    chainer.dataset.to_device(self.device, x) for x in sources]
                ys = [y.tolist()
                      for y in self.model.translate(sources, self.max_length)]
                hypotheses.extend(ys)

        bleu = bleu_score.corpus_bleu(
            references, hypotheses,
            smoothing_function=bleu_score.SmoothingFunction().method1)
        reporter.report({self.key: bleu}) 
開發者ID:chainer,項目名稱:chainer,代碼行數:20,代碼來源:seq2seq.py

示例6: __call__

# 需要導入模塊: from nltk.translate import bleu_score [as 別名]
# 或者: from nltk.translate.bleu_score import SmoothingFunction [as 別名]
def __call__(self, trainer):
        print('## Calculate BLEU')
        with chainer.no_backprop_mode():
            with chainer.using_config('train', False):
                references = []
                hypotheses = []
                for i in range(0, len(self.test_data), self.batch):
                    sources, targets = zip(*self.test_data[i:i + self.batch])
                    references.extend([[t.tolist()] for t in targets])

                    sources = [
                        chainer.dataset.to_device(self.device, x) for x in sources]
                    ys = [y.tolist()
                          for y in self.model.translate(sources, self.max_length)]
                    hypotheses.extend(ys)

        bleu = bleu_score.corpus_bleu(
            references, hypotheses,
            smoothing_function=bleu_score.SmoothingFunction().method1) * 100
        print('BLEU:', bleu)
        reporter.report({self.key: bleu}) 
開發者ID:soskek,項目名稱:convolutional_seq2seq,代碼行數:23,代碼來源:seq2seq.py

示例7: forward

# 需要導入模塊: from nltk.translate import bleu_score [as 別名]
# 或者: from nltk.translate.bleu_score import SmoothingFunction [as 別名]
def forward(self, trainer):
        with chainer.no_backprop_mode():
            references = []
            hypotheses = []
            for i in range(0, len(self.test_data), self.batch):
                sources, targets = zip(*self.test_data[i:i + self.batch])
                references.extend([[t.tolist()] for t in targets])

                sources = [
                    chainer.dataset.to_device(self.device, x) for x in sources]
                ys = [y.tolist()
                      for y in self.model.translate(sources, self.max_length)]
                hypotheses.extend(ys)

        bleu = bleu_score.corpus_bleu(
            references, hypotheses,
            smoothing_function=bleu_score.SmoothingFunction().method1)
        chainer.report({self.key: bleu}) 
開發者ID:pfnet,項目名稱:pfio,代碼行數:20,代碼來源:seq2seq_chainerio.py

示例8: _bleu

# 需要導入模塊: from nltk.translate import bleu_score [as 別名]
# 或者: from nltk.translate.bleu_score import SmoothingFunction [as 別名]
def _bleu(guess, answers):
    """Compute approximate BLEU score between guess and a set of answers."""
    if nltkbleu is None:
        # bleu library not installed, just return a default value
        return None
    # Warning: BLEU calculation *should* include proper tokenization and
    # punctuation etc. We're using the normalize_answer for everything though,
    # so we're over-estimating our BLEU scores.  Also note that NLTK's bleu is
    # going to be slower than fairseq's (which is written in C), but fairseq's
    # requires that everything be in arrays of ints (i.e. as tensors). NLTK's
    # works with strings, which is better suited for this module.
    return nltkbleu.sentence_bleu(
        [normalize_answer(a).split(" ") for a in answers],
        normalize_answer(guess).split(" "),
        smoothing_function=nltkbleu.SmoothingFunction(epsilon=1e-12).method1,
    ) 
開發者ID:natashamjaques,項目名稱:neural_chat,代碼行數:18,代碼來源:metrics.py

示例9: __init__

# 需要導入模塊: from nltk.translate import bleu_score [as 別名]
# 或者: from nltk.translate.bleu_score import SmoothingFunction [as 別名]
def __init__(self, smoothing):
    '''
    Params:
      :smoothing: Smoothing method for bleu.
    '''
    self.metrics = {'bleu-1': [], 'bleu-2': [], 'bleu-3': [], 'bleu-4': []}
    self.smoothing = [bleu_score.SmoothingFunction().method0,
                      bleu_score.SmoothingFunction().method1,
                      bleu_score.SmoothingFunction().method2,
                      bleu_score.SmoothingFunction().method3,
                      bleu_score.SmoothingFunction().method4,
                      bleu_score.SmoothingFunction().method5,
                      bleu_score.SmoothingFunction().method6,
                      bleu_score.SmoothingFunction().method7]
    self.smoothing = self.smoothing[smoothing]

  # Calculate metrics for one example. 
開發者ID:ricsinaruto,項目名稱:dialog-eval,代碼行數:19,代碼來源:bleu_metrics.py

示例10: cal_BLEU_nltk

# 需要導入模塊: from nltk.translate import bleu_score [as 別名]
# 或者: from nltk.translate.bleu_score import SmoothingFunction [as 別名]
def cal_BLEU_nltk(refer, candidate, ngram=1):
    '''
    SmoothingFunction refer to https://github.com/PaddlePaddle/models/blob/a72760dff8574fe2cb8b803e01b44624db3f3eff/PaddleNLP/Research/IJCAI2019-MMPMS/mmpms/utils/metrics.py
    '''
    smoothie = SmoothingFunction().method7
    if ngram == 1:
        weight = (1, 0, 0, 0)
    elif ngram == 2:
        weight = (0.5, 0.5, 0, 0)
    elif ngram == 3:
        weight = (0.33, 0.33, 0.33, 0)
    elif ngram == 4:
        weight = (0.25, 0.25, 0.25, 0.25)
    return sentence_bleu(refer, candidate, 
                         weights=weight, 
                         smoothing_function=smoothie)

# BLEU of nlg-eval 
開發者ID:gmftbyGMFTBY,項目名稱:MultiTurnDialogZoo,代碼行數:20,代碼來源:metric.py

示例11: get_bleu

# 需要導入模塊: from nltk.translate import bleu_score [as 別名]
# 或者: from nltk.translate.bleu_score import SmoothingFunction [as 別名]
def get_bleu(self, dataloader, input, reference_key, gen_key):
		refs = []
		gens = []
		for gen_sen, resp_sen in zip(input[gen_key], input[reference_key]):
			gen_sen_processed = dataloader.trim_in_ids(gen_sen)
			resp_sen_processed = dataloader.trim_in_ids(resp_sen[1:])
			refs.append(resp_sen_processed)
			gens.append(gen_sen_processed)
		gens = replace_unk(gens)
		bleu_irl_bw, bleu_irl_fw = [], []
		for i in range(len(gens)):
			bleu_irl_fw.append(sentence_bleu(refs, gens[i], smoothing_function=SmoothingFunction().method1))
		for i in range(len(refs)):
			bleu_irl_bw.append(sentence_bleu(gens, refs[i], smoothing_function=SmoothingFunction().method1))

		fw_bleu = (1.0 * sum(bleu_irl_fw) / len(bleu_irl_fw))
		bw_bleu = (1.0 * sum(bleu_irl_bw) / len(bleu_irl_bw))
		return 2.0 * bw_bleu * fw_bleu / (fw_bleu + bw_bleu) 
開發者ID:thu-coai,項目名稱:cotk,代碼行數:20,代碼來源:test_bleu.py

示例12: _score

# 需要導入模塊: from nltk.translate import bleu_score [as 別名]
# 或者: from nltk.translate.bleu_score import SmoothingFunction [as 別名]
def _score(self, gen: List[int], reference: List[int]) -> float:
		'''Return a BLEU score \in [0, 1] to calculate BLEU-ngram precision and recall.

		Arguments:
			gen (list): list of generated word ids.
			reference (list): list of word ids of a reference.

		Here is an Example:

			>>> gen = [4,5]
			>>> reference = [5,6]
			>>> self._score(gen, reference)
			0.150 # assume self.weights = [0.25,0.25,0.25,0.25]
		'''
		gen = self._replace_unk(gen)
		return sentence_bleu([reference], gen, self.weights, SmoothingFunction().method1) 
開發者ID:thu-coai,項目名稱:cotk,代碼行數:18,代碼來源:precision_recall.py

示例13: print_batch

# 需要導入模塊: from nltk.translate import bleu_score [as 別名]
# 或者: from nltk.translate.bleu_score import SmoothingFunction [as 別名]
def print_batch(learner: Learner, modeldata: ModelData, input_field, output_field, num_batches=1, num_sentences=-1,
                is_test=False, num_beams=1, weights=None, smoothing_function=None):
    predictions, targets, inputs = learner.predict_with_targs_and_inputs(is_test=is_test, num_beams=num_beams)
    weights = (1 / 3., 1 / 3., 1 / 3.) if weights is None else weights
    smoothing_function = SmoothingFunction().method1 if smoothing_function is None else smoothing_function
    blue_scores = []
    for batch_num, (input, target, prediction) in enumerate(zip(inputs, targets, predictions)):
        inputs_str: BatchBeamTokens = modeldata.itos(input, input_field)
        predictions_str: BatchBeamTokens = modeldata.itos(prediction, output_field)
        targets_str: BatchBeamTokens = modeldata.itos(target, output_field)
        for index, (inp, targ, pred) in enumerate(zip(inputs_str, targets_str, predictions_str)):
            blue_score = sentence_bleu([targ], pred, smoothing_function=smoothing_function, weights=weights)
            print(
                f'batch: {batch_num} sample : {index}\ninput: {" ".join(inp)}\ntarget: { " ".join(targ)}\nprediction: {" ".join(pred)}\nbleu: {blue_score}\n\n')
            blue_scores.append(blue_score)
            if 0 < num_sentences <= index - 1:
                break
        if 0 < num_batches <= batch_num - 1:
            break
    print(f'mean bleu score: {np.mean(blue_scores)}') 
開發者ID:outcastofmusic,項目名稱:quick-nlp,代碼行數:22,代碼來源:utils.py

示例14: sim_bleu

# 需要導入模塊: from nltk.translate import bleu_score [as 別名]
# 或者: from nltk.translate.bleu_score import SmoothingFunction [as 別名]
def sim_bleu(self, hyps, ref):
        """
        :param ref - a list of tokens of the reference
        :param hyps - a list of tokens of the hypothesis
    
        :return maxbleu - recall bleu
        :return avgbleu - precision bleu
        """
        scores = []
        for hyp in hyps:
            try:
               # scores.append(sentence_bleu([ref], hyp, smoothing_function=SmoothingFunction().method7,
               #                         weights=[1./4, 1./4, 1./4, 1./4]))
                scores.append(smoothed_bleu(list(bleu_stats(hyp, ref))))
            except:
                scores.append(0.0)
        return np.max(scores), np.mean(scores) 
開發者ID:guxd,項目名稱:deepAPI,代碼行數:19,代碼來源:metrics.py

示例15: bleu_score

# 需要導入模塊: from nltk.translate import bleu_score [as 別名]
# 或者: from nltk.translate.bleu_score import SmoothingFunction [as 別名]
def bleu_score(candidate, reference):
    score = sentence_bleu(
        [list(reference)], list(candidate),
        weights=(0.25, 0.25, 0.25, 0.25),
        smoothing_function=SmoothingFunction().method1)
    return score 
開發者ID:shibing624,項目名稱:dialogbot,代碼行數:8,代碼來源:bleu.py


注:本文中的nltk.translate.bleu_score.SmoothingFunction方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。