本文整理匯總了Python中nltk.stem.porter.PorterStemmer方法的典型用法代碼示例。如果您正苦於以下問題:Python porter.PorterStemmer方法的具體用法?Python porter.PorterStemmer怎麽用?Python porter.PorterStemmer使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類nltk.stem.porter
的用法示例。
在下文中一共展示了porter.PorterStemmer方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_dictionary_match
# 需要導入模塊: from nltk.stem import porter [as 別名]
# 或者: from nltk.stem.porter import PorterStemmer [as 別名]
def test_dictionary_match(doc_setup):
"""Test DictionaryMatch matcher."""
doc = doc_setup
space = MentionNgrams(n_min=1, n_max=1)
# Test with a list of str
matcher = DictionaryMatch(d=["this"])
assert set(tc.get_span() for tc in matcher.apply(space.apply(doc))) == {"This"}
# Test without a dictionary
with pytest.raises(Exception):
DictionaryMatch()
# TODO: test with plural words
matcher = DictionaryMatch(d=["is"], stemmer=PorterStemmer())
assert set(tc.get_span() for tc in matcher.apply(space.apply(doc))) == {"is"}
# Test if matcher raises an error when _f is given non-TemporarySpanMention
matcher = DictionaryMatch(d=["this"])
with pytest.raises(ValueError):
list(matcher.apply(doc.sentences[0].words))
示例2: load
# 需要導入模塊: from nltk.stem import porter [as 別名]
# 或者: from nltk.stem.porter import PorterStemmer [as 別名]
def load(tdb):
# load the tasks and arxiv metadata
stemmer = PorterStemmer()
tdb.load_tasks("data/tasks/nlpprogress.json")
tdb.load_synonyms(["data/tasks/synonyms.csv"])
arxiv = serialization.load(
"data/arxiv_aclweb.json.gz", fmt=serialization.Format.json_gz
)
for a in arxiv:
if a["abstract"] is None:
a["abstract"] = ""
# require and normalise arxiv titles
arxiv = [a for a in arxiv if "title" in a and a["title"] is not None]
for a in arxiv:
a["title"] = re.sub(" +", " ", a["title"].replace("\n", " "))
a["title_lower"] = a["title"].lower()
a["abstract_lower"] = a["abstract"].lower()
a["title_stem"] = stemmer.stem(a["title"])
a["abstract_stem"] = stemmer.stem(a["abstract"])
return arxiv
示例3: tiny_tokenize
# 需要導入模塊: from nltk.stem import porter [as 別名]
# 或者: from nltk.stem.porter import PorterStemmer [as 別名]
def tiny_tokenize(text, stem=False, stop_words=[]):
words = []
for token in wordpunct_tokenize(re.sub('[%s]' % re.escape(string.punctuation), ' ', \
text.decode(encoding='UTF-8', errors='ignore'))):
if not token.isdigit() and not token in stop_words:
if stem:
try:
w = EnglishStemmer().stem(token)
except Exception as e:
w = token
else:
w = token
words.append(w)
return words
# return [EnglishStemmer().stem(token) if stem else token for token in wordpunct_tokenize(
# re.sub('[%s]' % re.escape(string.punctuation), ' ', text.decode(encoding='UTF-8', errors='ignore'))) if
# not token.isdigit() and not token in stop_words]
示例4: __init__
# 需要導入模塊: from nltk.stem import porter [as 別名]
# 或者: from nltk.stem.porter import PorterStemmer [as 別名]
def __init__(self,paragraphs,removeStopWord = False,useStemmer = False):
self.idf = {} # dict to store IDF for words in paragraph
self.paragraphInfo = {} # structure to store paragraphVector
self.paragraphs = paragraphs
self.totalParas = len(paragraphs)
self.stopwords = stopwords.words('english')
self.removeStopWord = removeStopWord
self.useStemmer = useStemmer
self.vData = None
self.stem = lambda k:k.lower()
if(useStemmer):
ps = PorterStemmer()
self.stem = ps.stem
# Initialize
self.computeTFIDF()
# Return term frequency for Paragraph
# Input:
# paragraph(str): Paragraph as a whole in string format
# Output:
# wordFrequence(dict) : Dictionary of word and term frequency
示例5: sim_sentence
# 需要導入模塊: from nltk.stem import porter [as 別名]
# 或者: from nltk.stem.porter import PorterStemmer [as 別名]
def sim_sentence(self, queryVector, sentence):
sentToken = word_tokenize(sentence)
ps = PorterStemmer()
for index in range(0,len(sentToken)):
sentToken[index] = ps.stem(sentToken[index])
sim = 0
for word in queryVector.keys():
w = ps.stem(word)
if w in sentToken:
sim += 1
return sim/(len(sentToken)*len(queryVector.keys()))
# Get Named Entity from the sentence in form of PERSON, GPE, & ORGANIZATION
# Input:
# answers(list) : List of potential sentence containing answer
# Output:
# chunks(list) : List of tuple with entity and name in ranked
# order
示例6: stem_match
# 需要導入模塊: from nltk.stem import porter [as 別名]
# 或者: from nltk.stem.porter import PorterStemmer [as 別名]
def stem_match(hypothesis, reference, stemmer = PorterStemmer()):
"""
Stems each word and matches them in hypothesis and reference
and returns a word mapping between hypothesis and reference
:param hypothesis:
:type hypothesis:
:param reference:
:type reference:
:param stemmer: nltk.stem.api.StemmerI object (default PorterStemmer())
:type stemmer: nltk.stem.api.StemmerI or any class that
implements a stem method
:return: enumerated matched tuples, enumerated unmatched hypothesis tuples,
enumerated unmatched reference tuples
:rtype: list of 2D tuples, list of 2D tuples, list of 2D tuples
"""
enum_hypothesis_list, enum_reference_list = _generate_enums(hypothesis, reference)
return _enum_stem_match(enum_hypothesis_list, enum_reference_list, stemmer = stemmer)
示例7: allign_words
# 需要導入模塊: from nltk.stem import porter [as 別名]
# 或者: from nltk.stem.porter import PorterStemmer [as 別名]
def allign_words(hypothesis, reference, stemmer = PorterStemmer(), wordnet = wordnet):
"""
Aligns/matches words in the hypothesis to reference by sequentially
applying exact match, stemmed match and wordnet based synonym match.
In case there are multiple matches the match which has the least number
of crossing is chosen.
:param hypothesis: hypothesis string
:param reference: reference string
:param stemmer: nltk.stem.api.StemmerI object (default PorterStemmer())
:type stemmer: nltk.stem.api.StemmerI or any class that implements a stem method
:param wordnet: a wordnet corpus reader object (default nltk.corpus.wordnet)
:type wordnet: WordNetCorpusReader
:return: sorted list of matched tuples, unmatched hypothesis list, unmatched reference list
:rtype: list of tuples, list of tuples, list of tuples
"""
enum_hypothesis_list, enum_reference_list = _generate_enums(hypothesis, reference)
return _enum_allign_words(enum_hypothesis_list, enum_reference_list, stemmer= stemmer,
wordnet= wordnet)
示例8: __init__
# 需要導入模塊: from nltk.stem import porter [as 別名]
# 或者: from nltk.stem.porter import PorterStemmer [as 別名]
def __init__(self, ignore_stopwords=False):
_LanguageSpecificStemmer.__init__(self, ignore_stopwords)
porter.PorterStemmer.__init__(self)
示例9: clean
# 需要導入模塊: from nltk.stem import porter [as 別名]
# 或者: from nltk.stem.porter import PorterStemmer [as 別名]
def clean(s):
tokens = nltk.word_tokenize(s.lower())
tokens_clean = [token for token in tokens if token not in stopwords.words('english')]
tokens_stemmed = [PorterStemmer().stem(token) for token in tokens_clean]
return tokens_stemmed
示例10: __lemmatizer
# 需要導入模塊: from nltk.stem import porter [as 別名]
# 或者: from nltk.stem.porter import PorterStemmer [as 別名]
def __lemmatizer(self, docs):
output = []
for doc in docs:
stemmer = PorterStemmer()
texts = [stemmer.stem(i) for i in doc]
output.append(texts)
return output
示例11: addtoVocab
# 需要導入模塊: from nltk.stem import porter [as 別名]
# 或者: from nltk.stem.porter import PorterStemmer [as 別名]
def addtoVocab(self, words):
#stemmer = PorterStemmer()
w_list = self.removeStopWords(words)
for word in w_list:
self.vocabulary[word] += 1
return w_list
示例12: get_stemmed_combined_reviews
# 需要導入模塊: from nltk.stem import porter [as 別名]
# 或者: from nltk.stem.porter import PorterStemmer [as 別名]
def get_stemmed_combined_reviews(indeed_reviews_db, glassdoor_reviews_db):
combined = get_combined_reviews(indeed_reviews_db, glassdoor_reviews_db)
stemmer = PorterStemmer()
stemmed_reviews = []
for review in combined:
stemmed_reviews.append(' '.join([stemmer.stem(word) for sent in sent_tokenize(review) for word in word_tokenize(sent.lower())]))
return stemmed_reviews
示例13: get_stemmed_separate
# 需要導入模塊: from nltk.stem import porter [as 別名]
# 或者: from nltk.stem.porter import PorterStemmer [as 別名]
def get_stemmed_separate(indeed_reviews_db, glassdoor_reviews_db):
separate = get_separate_reviews(indeed_reviews_db, glassdoor_reviews_db)
stemmer = PorterStemmer()
stemmed_reviews = []
for review in separate:
stemmed_reviews.append(' '.join([stemmer.stem(word) for sent in sent_tokenize(review) for word in word_tokenize(sent.lower())]))
return stemmed_reviews
示例14: test_do_not_use_stemmer_when_UnicodeDecodeError
# 需要導入模塊: from nltk.stem import porter [as 別名]
# 或者: from nltk.stem.porter import PorterStemmer [as 別名]
def test_do_not_use_stemmer_when_UnicodeDecodeError():
"""Test DictionaryMatch when stemmer causes UnicodeDecodeError."""
stemmer = PorterStemmer()
matcher = DictionaryMatch(d=["is"], stemmer=stemmer)
# _stem(w) should return a word stem.
assert matcher._stem("caresses") == "caress"
stemmer.stem = Mock(
side_effect=UnicodeDecodeError("dummycodec", b"\x00\x00", 1, 2, "Dummy !")
)
matcher = DictionaryMatch(d=["is"], stemmer=stemmer)
# _stem(w) should return w as stemmer.stem raises UnicodeDecodeError.
assert matcher._stem("caresses") == "caresses"
示例15: tiny_tokenize_xml
# 需要導入模塊: from nltk.stem import porter [as 別名]
# 或者: from nltk.stem.porter import PorterStemmer [as 別名]
def tiny_tokenize_xml(text, stem=False, stop_words=[]):
return [EnglishStemmer().stem(token) if stem else token for token in wordpunct_tokenize(
re.sub('[%s]' % re.escape(string.punctuation), ' ', text.encode(encoding='ascii', errors='ignore'))) if
not token.isdigit() and not token in stop_words]