本文整理匯總了Python中nltk.sentiment.vader.SentimentIntensityAnalyzer方法的典型用法代碼示例。如果您正苦於以下問題:Python vader.SentimentIntensityAnalyzer方法的具體用法?Python vader.SentimentIntensityAnalyzer怎麽用?Python vader.SentimentIntensityAnalyzer使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類nltk.sentiment.vader
的用法示例。
在下文中一共展示了vader.SentimentIntensityAnalyzer方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: advancedSentimentAnalyzer
# 需要導入模塊: from nltk.sentiment import vader [as 別名]
# 或者: from nltk.sentiment.vader import SentimentIntensityAnalyzer [as 別名]
def advancedSentimentAnalyzer():
sentences = [
':)',
':(',
'She is so :(',
'I love the way cricket is played by the champions',
'She neither likes coffee nor tea',
]
senti = SentimentIntensityAnalyzer()
print(' -- built-in intensity analyser --')
for sentence in sentences:
print('[{}]'.format(sentence), end=' --> ')
kvp = senti.polarity_scores(sentence)
for k in kvp:
print('{} = {}, '.format(k, kvp[k]), end='')
print()
開發者ID:PacktPublishing,項目名稱:Natural-Language-Processing-with-Python-Cookbook,代碼行數:18,代碼來源:AdvSentiment.py
示例2: submit
# 需要導入模塊: from nltk.sentiment import vader [as 別名]
# 或者: from nltk.sentiment.vader import SentimentIntensityAnalyzer [as 別名]
def submit(self, dispatcher, tracker, domain):
# type: (CollectingDispatcher, Tracker, Dict[Text, Any]) -> List[Dict]
"""Define what the form has to do
after all required slots are filled
basically it generate sentiment analysis
using the user's feedback"""
sid = SentimentIntensityAnalyzer()
all_slots = tracker.slots
for slot, value in all_slots.copy().items():
if slot in self.required_slots(tracker):
res = sid.polarity_scores(value)
score = res.pop('compound', None)
classi, confidence = max(res.items(), key=lambda x: x[1])
# classification of the feedback, could be pos, neg, or neu
all_slots[slot+'_class'] = classi
# sentiment score of the feedback, range form -1 to 1
all_slots[slot+'_score'] = score
return [SlotSet(slot, value) for slot, value in all_slots.items()]
示例3: SentimentAnalysis
# 需要導入模塊: from nltk.sentiment import vader [as 別名]
# 或者: from nltk.sentiment.vader import SentimentIntensityAnalyzer [as 別名]
def SentimentAnalysis(_arg1, library="nltk"):
"""
Sentiment Analysis is a procedure that assigns a score from -1 to 1
for a piece of text with -1 being negative and 1 being positive. For
more information on the function and how to use it please refer to
tabpy-tools.md
"""
if not (isinstance(_arg1[0], str)):
raise TypeError
supportedLibraries = {"nltk", "textblob"}
library = library.lower()
if library not in supportedLibraries:
raise ValueError
scores = []
if library == "nltk":
sid = SentimentIntensityAnalyzer()
for text in _arg1:
sentimentResults = sid.polarity_scores(text)
score = sentimentResults["compound"]
scores.append(score)
elif library == "textblob":
for text in _arg1:
currScore = TextBlob(text)
scores.append(currScore.sentiment.polarity)
return scores
示例4: getSentiments
# 需要導入模塊: from nltk.sentiment import vader [as 別名]
# 或者: from nltk.sentiment.vader import SentimentIntensityAnalyzer [as 別名]
def getSentiments(df):
sid = SentimentIntensityAnalyzer()
tweet_str = ""
for tweet in df['Text']:
tweet_str = tweet_str + " " + tweet
print(sid.polarity_scores(tweet_str))
# positiveWords = ["good", "buy", "great", "bull", "up", "beast", ]
# negativeWords = ["bad", "sell", "terrible", "bear", "down"]
# positive = 0
# negative = 0
# i=1
# for tweet in totalTweets:
# for word in positiveWords:
# if word in tweet.text.encode('utf-8'):
# positive += 1
# print(i, tweet.text.encode('utf-8'))
# print(tweet.created_at)
# for word in negativeWords:
# if word in tweet.text.encode('utf-8'):
# negative += 1
# print(i, tweet.text.encode('utf-8'))
# print(tweet.created_at)
# i+=1
# print("POSITIVE TWEETS: " + str(positive))
# print("NEGATIVE TWEETS: " + str(negative))
示例5: sentimentScore
# 需要導入模塊: from nltk.sentiment import vader [as 別名]
# 或者: from nltk.sentiment.vader import SentimentIntensityAnalyzer [as 別名]
def sentimentScore(sentences):
analyzer = SentimentIntensityAnalyzer()
results = []
for sentence in sentences:
vs = analyzer.polarity_scores(sentence)
print("vs: " + str(vs))
results.append(vs)
return results
# sentimentScore(examples)
示例6: on_status
# 需要導入模塊: from nltk.sentiment import vader [as 別名]
# 或者: from nltk.sentiment.vader import SentimentIntensityAnalyzer [as 別名]
def on_status(self, status):
original_tweet = status.text
# For every incoming tweet...
for query in self.queries:
if query.lower() in original_tweet.lower():
# Categorize tweet
lookup = self.reverse[query]
# Increment count
self.tracker[lookup]['volume'] += 1
# Sentiment analysis
if self.sentiment:
processed_tweet = process(original_tweet.lower())
score = SentimentIntensityAnalyzer().polarity_scores(processed_tweet)['compound']
self.tracker[lookup]['scores'].append(score)
# Check refresh
if elapsed_time(self.timer) >= self.refresh:
if not self.processing:
self.processing = True
processing_thread = threading.Thread(target=self.process)
processing_thread.start()
return True
示例7: streamer
# 需要導入模塊: from nltk.sentiment import vader [as 別名]
# 或者: from nltk.sentiment.vader import SentimentIntensityAnalyzer [as 別名]
def streamer(credentials, queries, refresh, sentiment=False, debug=False):
keywords = [i for j in queries.values() for i in j]
# User Error Checks
if len(queries) <= 0: print("Error: You must include at least one query."); return
if len(queries) >= 10: print("Warning: Fewer than ten query recommended.")
if len(keywords) <= 0: print("Error: You must include at least one keyword."); return
if len(keywords) >= 20: print("Warning: Fewer than twenty keywords recommended.")
if refresh <= 0: print("Error: Refresh rate must be greater than 0"); return
auth = tweepy.OAuthHandler(credentials[0], credentials[1])
auth.set_access_token(credentials[2], credentials[3])
if sentiment:
global SentimentIntensityAnalyzer
from nltk.sentiment.vader import SentimentIntensityAnalyzer
while True:
# Start streaming -----------------------------
try:
print("Streaming Now...")
listener = Listener(auth, queries, refresh, sentiment, debug)
stream = tweepy.Stream(auth, listener)
stream.filter(track=keywords)
except (Timeout, ConnectionError, ReadTimeoutError):
print("{0} Error: Connection Dropped\n".format(time.strftime('%m/%d/%Y %H:%M:%S')))
print("Re-establishing Connection...")
time.sleep((15*60)+1) # Wait at least 15 minutes before restarting listener
# ---------------------------------------------
示例8: __init__
# 需要導入模塊: from nltk.sentiment import vader [as 別名]
# 或者: from nltk.sentiment.vader import SentimentIntensityAnalyzer [as 別名]
def __init__(self):
self._sent_analyzer = SIA()
self._word_tokenizer = WordPunctTokenizer().tokenize
self._sent_tokenizer = nltk.data.LazyLoader(
'tokenizers/punkt/english.pickle'
).tokenize
self._ids = []
示例9: func
# 需要導入模塊: from nltk.sentiment import vader [as 別名]
# 或者: from nltk.sentiment.vader import SentimentIntensityAnalyzer [as 別名]
def func(cls, *args):
def inner(input_series):
from nltk.sentiment.vader import SentimentIntensityAnalyzer
# Hack until https://github.com/nteract/coffee_boat/issues/47
try:
sid = SentimentIntensityAnalyzer()
except LookupError:
import nltk
nltk.download('vader_lexicon')
sid = SentimentIntensityAnalyzer()
result = input_series.apply(
lambda sentence: sid.polarity_scores(sentence)['pos'])
return result
return inner
示例10: __init__
# 需要導入模塊: from nltk.sentiment import vader [as 別名]
# 或者: from nltk.sentiment.vader import SentimentIntensityAnalyzer [as 別名]
def __init__(self):
self.analyzer = SentimentIntensityAnalyzer()
super().__init__()
示例11: compare
# 需要導入模塊: from nltk.sentiment import vader [as 別名]
# 或者: from nltk.sentiment.vader import SentimentIntensityAnalyzer [as 別名]
def compare(self, statement, other_statement):
"""
Return the similarity of two statements based on
their calculated sentiment values.
:return: The percent of similarity between the sentiment value.
:rtype: float
"""
from nltk.sentiment.vader import SentimentIntensityAnalyzer
sentiment_analyzer = SentimentIntensityAnalyzer()
statement_polarity = sentiment_analyzer.polarity_scores(statement.text.lower())
statement2_polarity = sentiment_analyzer.polarity_scores(other_statement.text.lower())
statement_greatest_polarity = 'neu'
statement_greatest_score = -1
for polarity in sorted(statement_polarity):
if statement_polarity[polarity] > statement_greatest_score:
statement_greatest_polarity = polarity
statement_greatest_score = statement_polarity[polarity]
statement2_greatest_polarity = 'neu'
statement2_greatest_score = -1
for polarity in sorted(statement2_polarity):
if statement2_polarity[polarity] > statement2_greatest_score:
statement2_greatest_polarity = polarity
statement2_greatest_score = statement2_polarity[polarity]
# Check if the polarity if of a different type
if statement_greatest_polarity != statement2_greatest_polarity:
return 0
values = [statement_greatest_score, statement2_greatest_score]
difference = max(values) - min(values)
return 1.0 - difference
示例12: analyze_sentiment_vader_lexicon
# 需要導入模塊: from nltk.sentiment import vader [as 別名]
# 或者: from nltk.sentiment.vader import SentimentIntensityAnalyzer [as 別名]
def analyze_sentiment_vader_lexicon(review,
threshold=0.1,
verbose=False):
# pre-process text
review = normalize_accented_characters(review)
review = html_parser.unescape(review)
review = strip_html(review)
# analyze the sentiment for review
analyzer = SentimentIntensityAnalyzer()
scores = analyzer.polarity_scores(review)
# get aggregate scores and final sentiment
agg_score = scores['compound']
final_sentiment = 'positive' if agg_score >= threshold\
else 'negative'
if verbose:
# display detailed sentiment statistics
positive = str(round(scores['pos'], 2)*100)+'%'
final = round(agg_score, 2)
negative = str(round(scores['neg'], 2)*100)+'%'
neutral = str(round(scores['neu'], 2)*100)+'%'
sentiment_frame = pd.DataFrame([[final_sentiment, final, positive,
negative, neutral]],
columns=pd.MultiIndex(levels=[['SENTIMENT STATS:'],
['Predicted Sentiment', 'Polarity Score',
'Positive', 'Negative',
'Neutral']],
labels=[[0,0,0,0,0],[0,1,2,3,4]]))
print sentiment_frame
return final_sentiment
開發者ID:dipanjanS,項目名稱:text-analytics-with-python,代碼行數:32,代碼來源:sentiment_analysis_unsupervised_lexical.py
示例13: sentiment
# 需要導入模塊: from nltk.sentiment import vader [as 別名]
# 或者: from nltk.sentiment.vader import SentimentIntensityAnalyzer [as 別名]
def sentiment(self):
if self._sentiment is None:
t = clean(self._data['text'])
self._sentiment = SentimentIntensityAnalyzer().polarity_scores(t)
return self._sentiment
示例14: __init__
# 需要導入模塊: from nltk.sentiment import vader [as 別名]
# 或者: from nltk.sentiment.vader import SentimentIntensityAnalyzer [as 別名]
def __init__(self, model_file: str=None) -> None:
super().__init__()
# pip install nltk
# python > import nltk > nltk.download() > d > vader_lexicon
from nltk.sentiment.vader import SentimentIntensityAnalyzer
self.vader = SentimentIntensityAnalyzer()
示例15: __init__
# 需要導入模塊: from nltk.sentiment import vader [as 別名]
# 或者: from nltk.sentiment.vader import SentimentIntensityAnalyzer [as 別名]
def __init__(self, model_file: str = None) -> None:
from nltk.sentiment.vader import SentimentIntensityAnalyzer
self.vader = SentimentIntensityAnalyzer()
self.classes = np.array([1, 2, 3, 4, 5])