當前位置: 首頁>>代碼示例>>Python>>正文


Python nltk.pos_tag方法代碼示例

本文整理匯總了Python中nltk.pos_tag方法的典型用法代碼示例。如果您正苦於以下問題:Python nltk.pos_tag方法的具體用法?Python nltk.pos_tag怎麽用?Python nltk.pos_tag使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在nltk的用法示例。


在下文中一共展示了nltk.pos_tag方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: make_data_instance

# 需要導入模塊: import nltk [as 別名]
# 或者: from nltk import pos_tag [as 別名]
def make_data_instance(text, index):
    """
    Takes a line of text and creates a CoNLL09Example instance from it.
    """
    tokenized = nltk.tokenize.word_tokenize(text.lstrip().rstrip())
    pos_tagged = [p[1] for p in nltk.pos_tag(tokenized)]

    lemmatized = [lemmatizer.lemmatize(tokenized[i]) 
                    if not pos_tagged[i].startswith("V") else lemmatizer.lemmatize(tokenized[i], pos='v') 
                    for i in range(len(tokenized))]

    conll_lines = ["{}\t{}\t_\t{}\t_\t{}\t{}\t_\t_\t_\t_\t_\t_\t_\tO\n".format(
        i+1, tokenized[i], lemmatized[i], pos_tagged[i], index) for i in range(len(tokenized))]
    elements = [CoNLL09Element(conll_line) for conll_line in conll_lines]

    sentence = Sentence(syn_type=None, elements=elements)
    instance = CoNLL09Example(sentence, elements)

    return instance 
開發者ID:swabhs,項目名稱:open-sesame,代碼行數:21,代碼來源:raw_data.py

示例2: text_to_num

# 需要導入模塊: import nltk [as 別名]
# 或者: from nltk import pos_tag [as 別名]
def text_to_num(text):
    tokenized = nltk.word_tokenize(text);
    tags = nltk.pos_tag(tokenized)
    print(tags)
    chunkPattern = r""" Chunk0: {((<NN|CD.?|RB>)<CD.?|VBD.?|VBP.?|VBN.?|NN.?|RB.?|JJ>*)<NN|CD.?>} """
    chunkParser = nltk.RegexpParser(chunkPattern)
    chunkedData = chunkParser.parse(tags)
    print(chunkedData)

    for subtree in chunkedData.subtrees(filter=lambda t: t.label() in "Chunk0"):
        exp = ""
        for l in subtree.leaves():
            exp += str(l[0]) + " "
        exp = exp[:-1]
        print(exp)
        try:
            text = text.replace(exp, str(t2n.text2num(exp)))
        except Exception as e:
            print("error text2num ->", e.args)
        print("text2num -> ", text)
    return text 
開發者ID:abhi007tyagi,項目名稱:JARVIS,代碼行數:23,代碼來源:math_expression_calculator.py

示例3: evaluate_sentiment

# 需要導入模塊: import nltk [as 別名]
# 或者: from nltk import pos_tag [as 別名]
def evaluate_sentiment(text):
    pos_score = 0
    neg_score = 0
    tokened = nltk.word_tokenize(text.decode('utf8', 'ignore').replace('<br />',' '))
    pos_pairs = nltk.pos_tag(tokened)
    for tuple in pos_pairs:
        pos = ''
        if tuple[1] == "NN":
            pos = 'n/'
        if tuple[1] == "JJ":
            pos = 'a/'
        if tuple[1] == "VB":
            pos = 'v/'
        if tuple[1] == "RB":
            pos = 'r/'
        try:
            pos_score += sentiwordnet[pos+tuple[0].lower()][0]
            neg_score += sentiwordnet[pos+tuple[0].lower()][1]
        except:
            pass
    return pos_score, neg_score 
開發者ID:iamshang1,項目名稱:Projects,代碼行數:23,代碼來源:sentiwordnet.py

示例4: evaluate_sentiment

# 需要導入模塊: import nltk [as 別名]
# 或者: from nltk import pos_tag [as 別名]
def evaluate_sentiment(text):
    pos_score = 0
    neg_score = 0
    tokened = nltk.word_tokenize(text)
    pos_pairs = nltk.pos_tag(tokened)
    for tuple in pos_pairs:
        pos = ''
        if tuple[1] == "NN":
            pos = 'n/'
        if tuple[1] == "JJ":
            pos = 'a/'
        if tuple[1] == "VB":
            pos = 'v/'
        if tuple[1] == "RB":
            pos = 'r/'
        try:
            pos_score += sentiwordnet[pos+tuple[0].lower()][0]
            neg_score += sentiwordnet[pos+tuple[0].lower()][1]
        except:
            pass
    return pos_score, neg_score 
開發者ID:iamshang1,項目名稱:Projects,代碼行數:23,代碼來源:combined.py

示例5: _nltk_process_sents

# 需要導入模塊: import nltk [as 別名]
# 或者: from nltk import pos_tag [as 別名]
def _nltk_process_sents(self, sents):
        for sentence in sents:
            if isinstance(sentence, STRING_TYPES):
                if self._tokenizer_lang is None:
                    raise ValueError(
                        "No word tokenizer available for this language. "
                        "Please tokenize before calling the parser."
                        )
                sentence = nltk.word_tokenize(sentence, self._tokenizer_lang)

            if IS_PY2:
                sentence = [
                    word.decode('utf-8', 'ignore') if isinstance(word, str) else word
                    for word in sentence
                    ]

            if not self._provides_tags:
                sentence = nltk.pos_tag(sentence)
                yield [word for word, tag in sentence], sentence
            else:
                yield sentence, sentence 
開發者ID:nikitakit,項目名稱:self-attentive-parser,代碼行數:23,代碼來源:nltk_plugin.py

示例6: words_by_part_of_speech

# 需要導入模塊: import nltk [as 別名]
# 或者: from nltk import pos_tag [as 別名]
def words_by_part_of_speech(self) -> dict:
        """
        Compute the parts of speech for each word in the document.

        Uses nltk.pos_tag.

        Returns:
            dict

        """
        words = self.words()
        tagged = nltk.pos_tag(words)
        categories = {}
        for _type in {t[1] for t in tagged}:
            categories[_type] = [t[0] for t in tagged if t[1] == _type]
        return categories 
開發者ID:gender-bias,項目名稱:gender-bias,代碼行數:18,代碼來源:document.py

示例7: preprocess

# 需要導入模塊: import nltk [as 別名]
# 或者: from nltk import pos_tag [as 別名]
def preprocess(html):
    """
    Returns a preprocessed document consisting of a list of paragraphs, which
    is a list of sentences, which is a list of tuples, where each tuple is a
    (token, part of speech) pair.
    """
    try:
        return [
            [
                nltk.pos_tag(nltk.wordpunct_tokenize(sent))
                for sent in nltk.sent_tokenize(paragraph)
            ]
            for paragraph in para_tokenize(html)
        ]
    except Exception as e:
        raise NLTKError("could not preprocess text: {}".format(str(e))) 
開發者ID:DistrictDataLabs,項目名稱:partisan-discourse,代碼行數:18,代碼來源:nlp.py

示例8: line_prep

# 需要導入模塊: import nltk [as 別名]
# 或者: from nltk import pos_tag [as 別名]
def line_prep(self, line):
        """ Tokenizes and POS-tags a line from the SICK corpus to be compatible with WordNet synset lookup. """
        # Split line into sentences + score
        s1, s2, sim_score = line.split('\t')
        # Tokenize
        s1_tokens = word_tokenize(s1)
        s2_tokens = word_tokenize(s2)
        # Assign part of speech tags
        s1_penn_pos = nltk.pos_tag(s1_tokens)
        s2_penn_pos = nltk.pos_tag(s2_tokens)
        # Convert to WordNet POS tags and store word position in sentence for replacement
        # Each tuple contains (word, WordNet_POS_tag, position)
        s1_wn_pos = list()
        s2_wn_pos = list()
        for idx, item in enumerate(s1_penn_pos):
            if self.get_wordnet_pos(item[1]) != 'OTHER':
                s1_wn_pos.append((item[0], self.get_wordnet_pos(item[1]), s1_penn_pos.index(item)))
        for idx, item in enumerate(s2_penn_pos):
            if self.get_wordnet_pos(item[1]) != 'OTHER':
                s2_wn_pos.append((item[0], self.get_wordnet_pos(item[1]), s2_penn_pos.index(item)))

        # Each tuple contains (word, WordNet_POS_tag, position); Source sentence provided for use in disambiguation
        return [(s1_wn_pos, s1_tokens), (s2_wn_pos, s2_tokens)], sim_score 
開發者ID:demelin,項目名稱:Sentence-similarity-classifier-for-pyTorch,代碼行數:25,代碼來源:sick_extender.py

示例9: tokenize

# 需要導入模塊: import nltk [as 別名]
# 或者: from nltk import pos_tag [as 別名]
def tokenize(data, language="english", filterStopWords = False, tagging = False):
    result = {}
    tags = []
    filterChars = [",", ".", "?", ";", ":", "'", "!", "@", "#", "$", "%", "&", "*", "(", ")", "+", "{", "}", "[", "]", "\\", "|"]
    sent_token = nltk.tokenize.sent_tokenize(data, language)
    word_token = nltk.tokenize.word_tokenize(data, language)
    word_token = [w for w in word_token if not w in filterChars]
    if filterStopWords is True:
        stop_words = set(stopwords.words(language))
        word_token = [w for w in word_token if not w in stop_words]

    if tagging is True:
        tags = nltk.pos_tag(word_token)

    result = {"sent_token": sent_token, "word_token": word_token, "pos_tag": tags}
    return json.loads(jsonpickle.encode(result, unpicklable=False)) 
開發者ID:tech-quantum,項目名稱:sia-cog,代碼行數:18,代碼來源:nltkmgr.py

示例10: get_last_noun_and_article

# 需要導入模塊: import nltk [as 別名]
# 或者: from nltk import pos_tag [as 別名]
def get_last_noun_and_article(sentence):
    tokens = nltk.word_tokenize(sentence)
    tags = nltk.pos_tag(tokens)

    noun = None
    for tag in reversed(tags):
        if "NN" in tag[1]:
            if noun:
                noun = (tag[0] + " " + noun).strip()
            else:
                noun = tag[0]

        # If encountering an article while there is a noun found
        elif bool(noun):
            if "DT" in tag[1] or "PRP$" in tag[1]:
                return tag[0] + " " + noun
            return noun

    return None 
開發者ID:korymath,項目名稱:talk-generator,代碼行數:21,代碼來源:language_util.py

示例11: nltk_preprocess

# 需要導入模塊: import nltk [as 別名]
# 或者: from nltk import pos_tag [as 別名]
def nltk_preprocess(strings):
  if not has_nltk:
    return

  strings = "\n".join(map(str, list(strings)))
  tokens = re.findall(FUNCTION_NAMES_REGEXP, strings)
  l = []
  for token in tokens:
    l.append(token[0])
  word_tags = nltk.pos_tag(l)
  for word, tag in word_tags:
    try:
      FOUND_TOKENS[word.lower()].add(tag)
    except:
      FOUND_TOKENS[word.lower()] = set([tag])

#------------------------------------------------------------------------------- 
開發者ID:joxeankoret,項目名稱:idamagicstrings,代碼行數:19,代碼來源:IDAMagicStrings.py

示例12: process_text

# 需要導入模塊: import nltk [as 別名]
# 或者: from nltk import pos_tag [as 別名]
def process_text(text):
    soup = BeautifulSoup(text, "lxml")
    tags_del = soup.get_text()
    no_html = re.sub('<[^>]*>', '', tags_del)
    tokenized = casual_tokenizer(no_html)
    lower = [item.lower() for item in tokenized]
    decontract = [expandContractions(item, c_re=c_re) for item in lower]
    tagged = nltk.pos_tag(decontract)
    lemma = lemma_wordnet(tagged)
    #no_num = [re.sub('[0-9]+', '', each) for each in lemma]
    no_punc = [w for w in lemma if w not in punc]
    no_stop = [w for w in no_punc if w not in stop_words]
    return no_stop
################################################################################################################################################################
####   THE ABOVE Process_Text secion Re-used with Permission from:
####  R O B   S A L G A D O    robert.salgado@gmail.com Thank YOU!
################################################################################ 
開發者ID:AutoViML,項目名稱:Auto_ViML,代碼行數:19,代碼來源:Auto_NLP.py

示例13: extract_nnp_phrases

# 需要導入模塊: import nltk [as 別名]
# 或者: from nltk import pos_tag [as 別名]
def extract_nnp_phrases(text):
    """
    NNP extractor convenience method.
    :param text:
    :return:
    """
    phrase_list = []

    for sentence in nltk.sent_tokenize(text):
        # Get POS
        tokens = nltk.word_tokenize(sentence)
        pos = nltk.pos_tag(tokens)

        # Get POS
        phrase = []

        for t, p in pos:
            if p in ["NNP", "NNPS"] or t in [",", "&"]:
                phrase.append(t)
            else:
                if len(phrase) > 1:
                    phrase_list.append(clean_nnp_phrase(phrase))
                phrase = []

    return phrase_list 
開發者ID:LexPredict,項目名稱:lexpredict-contraxsuite,代碼行數:27,代碼來源:custom.py

示例14: annotate_pos_with_term

# 需要導入模塊: import nltk [as 別名]
# 或者: from nltk import pos_tag [as 別名]
def annotate_pos_with_term(sentence, term):
    """POS-tag single sentence while preserving _TERM_ using the original term"""
    try:
        pos_term = []

        # replace term if necessary
        if '_term_' not in sentence.lower():
            sentence_term = sentence.lower().replace(term.lower(), '_TERM_')
        else:
            sentence_term = sentence.lower()

        tok = word_tokenize(sentence_term)
        tags = pos_tag(tok)

        for tag in tags:
            if '_TERM_' in tag[0].upper():
                pos_term.append('_TERM_')
            else:
                pos_term.append(tag[1])

        return ' '.join(pos_term)
    except Exception, e:
        log.error('POS annotation error: %s', e)
        return None 
開發者ID:wordnik,項目名稱:serapis,代碼行數:26,代碼來源:annotate.py

示例15: annotate_sentence

# 需要導入模塊: import nltk [as 別名]
# 或者: from nltk import pos_tag [as 別名]
def annotate_sentence(sentence_dict, term):
    """
    Annotates a sentence object from a message with Penn Treebank POS tags.

    Args:
        sentence_dict: dict -- Must contain 's' and 's_clean', which is the
                       sentence with all occurrences of the search term
                       replaced with '_TERM-'
    Returns:
        dict -- updated sentence_dict with 'pos_tags' field.

    """
    tags = pos_tag(word_tokenize(sentence_dict['s_clean']))
    pos_tags = ['/'.join(b) for b in tags]
    sentence_dict['pos_tags'] = " ".join(pos_tags)
    sentence_dict['features'] = {}
    return sentence_dict 
開發者ID:wordnik,項目名稱:serapis,代碼行數:19,代碼來源:annotate.py


注:本文中的nltk.pos_tag方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。