當前位置: 首頁>>代碼示例>>Python>>正文


Python nltk.parse方法代碼示例

本文整理匯總了Python中nltk.parse方法的典型用法代碼示例。如果您正苦於以下問題:Python nltk.parse方法的具體用法?Python nltk.parse怎麽用?Python nltk.parse使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在nltk的用法示例。


在下文中一共展示了nltk.parse方法的12個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: import nltk [as 別名]
# 或者: from nltk import parse [as 別名]
def __init__(self, meaning, glue, indices=None):
        if not indices:
            indices = set()

        if isinstance(meaning, string_types):
            self.meaning = Expression.fromstring(meaning)
        elif isinstance(meaning, Expression):
            self.meaning = meaning
        else:
            raise RuntimeError('Meaning term neither string or expression: %s, %s' % (meaning, meaning.__class__))

        if isinstance(glue, string_types):
            self.glue = linearlogic.LinearLogicParser().parse(glue)
        elif isinstance(glue, linearlogic.Expression):
            self.glue = glue
        else:
            raise RuntimeError('Glue term neither string or expression: %s, %s' % (glue, glue.__class__))

        self.indices = indices 
開發者ID:rafasashi,項目名稱:razzy-spinner,代碼行數:21,代碼來源:glue.py

示例2: dep_parse

# 需要導入模塊: import nltk [as 別名]
# 或者: from nltk import parse [as 別名]
def dep_parse(self, sentence):
        """
        Return a dependency graph for the sentence.

        :param sentence: the sentence to be parsed
        :type sentence: list(str)
        :rtype: DependencyGraph
        """

        #Lazy-initialize the depparser
        if self.depparser is None:
            from nltk.parse import MaltParser
            self.depparser = MaltParser(tagger=self.get_pos_tagger())
        if not self.depparser._trained:
            self.train_depparser()
        return self.depparser.parse(sentence, verbose=self.verbose) 
開發者ID:rafasashi,項目名稱:razzy-spinner,代碼行數:18,代碼來源:glue.py

示例3: __init__

# 需要導入模塊: import nltk [as 別名]
# 或者: from nltk import parse [as 別名]
def __init__(self, meaning, glue, indices=None):
        if not indices:
            indices = set()

        if isinstance(meaning, str):
            self.meaning = LogicParser().parse(meaning)
        elif isinstance(meaning, Expression):
            self.meaning = meaning
        else:
            raise RuntimeError, 'Meaning term neither string or expression: %s, %s' % (meaning, meaning.__class__)

        if isinstance(glue, str):
            self.glue = linearlogic.LinearLogicParser().parse(glue)
        elif isinstance(glue, linearlogic.Expression):
            self.glue = glue
        else:
            raise RuntimeError, 'Glue term neither string or expression: %s, %s' % (glue, glue.__class__)

        self.indices = indices 
開發者ID:blackye,項目名稱:luscan-devel,代碼行數:21,代碼來源:glue.py

示例4: pos_tag_raw_text

# 需要導入模塊: import nltk [as 別名]
# 或者: from nltk import parse [as 別名]
def pos_tag_raw_text(self, text, as_tuple_list=True):
        # Unfortunately for the moment there is no method to do sentence split + pos tagging in nltk.parse.corenlp
        # Ony raw_tag_sents is available but assumes a list of str (so it assumes the sentence are already split)
        # We create a small custom function highly inspired from raw_tag_sents to do both

        def raw_tag_text():
            """
            Perform tokenizing sentence splitting and PosTagging and keep the 
            sentence splits structure
            """
            properties = {'annotators':'tokenize,ssplit,pos'}
            tagged_data = self.parser.api_call(text, properties=properties)
            for tagged_sentence in tagged_data['sentences']:
                yield [(token['word'], token['pos']) for token in tagged_sentence['tokens']]
        
        tagged_text = list(raw_tag_text())

        if as_tuple_list:
            return tagged_text
        return '[ENDSENT]'.join(
            [' '.join([tuple2str(tagged_token, self.separator) for tagged_token in sent]) for sent in tagged_text]) 
開發者ID:swisscom,項目名稱:ai-research-keyphrase-extraction,代碼行數:23,代碼來源:postagging.py

示例5: __init__

# 需要導入模塊: import nltk [as 別名]
# 或者: from nltk import parse [as 別名]
def __init__(self, meaning, glue, indices=None):
        if not indices:
            indices = set()

        if isinstance(meaning, string_types):
            self.meaning = Expression.fromstring(meaning)
        elif isinstance(meaning, Expression):
            self.meaning = meaning
        else:
            raise RuntimeError(
                'Meaning term neither string or expression: %s, %s'
                % (meaning, meaning.__class__)
            )

        if isinstance(glue, string_types):
            self.glue = linearlogic.LinearLogicParser().parse(glue)
        elif isinstance(glue, linearlogic.Expression):
            self.glue = glue
        else:
            raise RuntimeError(
                'Glue term neither string or expression: %s, %s'
                % (glue, glue.__class__)
            )

        self.indices = indices 
開發者ID:V1EngineeringInc,項目名稱:V1EngineeringInc-Docs,代碼行數:27,代碼來源:glue.py

示例6: dep_parse

# 需要導入模塊: import nltk [as 別名]
# 或者: from nltk import parse [as 別名]
def dep_parse(self, sentence):
        """
        Return a dependency graph for the sentence.

        :param sentence: the sentence to be parsed
        :type sentence: list(str)
        :rtype: DependencyGraph
        """

        # Lazy-initialize the depparser
        if self.depparser is None:
            from nltk.parse import MaltParser

            self.depparser = MaltParser(tagger=self.get_pos_tagger())
        if not self.depparser._trained:
            self.train_depparser()
        return self.depparser.parse(sentence, verbose=self.verbose) 
開發者ID:V1EngineeringInc,項目名稱:V1EngineeringInc-Docs,代碼行數:19,代碼來源:glue.py

示例7: parse

# 需要導入模塊: import nltk [as 別名]
# 或者: from nltk import parse [as 別名]
def parse(self, tokens):
        # Inherit docs from ParserI

        tokens = list(tokens)
        self._grammar.check_coverage(tokens)

        # The most likely constituent table.  This table specifies the
        # most likely constituent for a given span and type.
        # Constituents can be either Trees or tokens.  For Trees,
        # the "type" is the Nonterminal for the tree's root node
        # value.  For Tokens, the "type" is the token's type.
        # The table is stored as a dictionary, since it is sparse.
        constituents = {}

        # Initialize the constituents dictionary with the words from
        # the text.
        if self._trace: print ('Inserting tokens into the most likely'+
                               ' constituents table...')
        for index in range(len(tokens)):
            token = tokens[index]
            constituents[index,index+1,token] = token
            if self._trace > 1:
                self._trace_lexical_insertion(token, index, len(tokens))

        # Consider each span of length 1, 2, ..., n; and add any trees
        # that might cover that span to the constituents dictionary.
        for length in range(1, len(tokens)+1):
            if self._trace:
                print ('Finding the most likely constituents'+
                       ' spanning %d text elements...' % length)
            for start in range(len(tokens)-length+1):
                span = (start, start+length)
                self._add_constituents_spanning(span, constituents,
                                                tokens)

        # Return the tree that spans the entire text & have the right cat
        return constituents.get((0, len(tokens), self._grammar.start())) 
開發者ID:blackye,項目名稱:luscan-devel,代碼行數:39,代碼來源:viterbi.py

示例8: demo

# 需要導入模塊: import nltk [as 別名]
# 或者: from nltk import parse [as 別名]
def demo(show_example=-1):
    from nltk.parse import MaltParser
    examples = ['David sees Mary',
                'David eats a sandwich',
                'every man chases a dog',
                'every man believes a dog sleeps',
                'John gives David a sandwich',
                'John chases himself']
#                'John persuades David to order a pizza',
#                'John tries to go',
#                'John tries to find a unicorn',
#                'John seems to vanish',
#                'a unicorn seems to approach',
#                'every big cat leaves',
#                'every gray cat leaves',
#                'every big gray cat leaves',
#                'a former senator leaves',

    print('============== DEMO ==============')

    tagger = RegexpTagger(
        [('^(David|Mary|John)$', 'NNP'),
         ('^(sees|eats|chases|believes|gives|sleeps|chases|persuades|tries|seems|leaves)$', 'VB'),
         ('^(go|order|vanish|find|approach)$', 'VB'),
         ('^(a)$', 'ex_quant'),
         ('^(every)$', 'univ_quant'),
         ('^(sandwich|man|dog|pizza|unicorn|cat|senator)$', 'NN'),
         ('^(big|gray|former)$', 'JJ'),
         ('^(him|himself)$', 'PRP')
    ])

    depparser = MaltParser(tagger=tagger)
    glue = Glue(depparser=depparser, verbose=False)

    for (i, sentence) in enumerate(examples):
        if i==show_example or show_example==-1:
            print('[[[Example %s]]]  %s' % (i, sentence))
            for reading in glue.parse_to_meaning(sentence.split()):
                print(reading.simplify())
            print('') 
開發者ID:rafasashi,項目名稱:razzy-spinner,代碼行數:42,代碼來源:glue.py

示例9: __init__

# 需要導入模塊: import nltk [as 別名]
# 或者: from nltk import parse [as 別名]
def __init__(self, grammar, trace=0):
        """
        Create a new ``ViterbiParser`` parser, that uses ``grammar`` to
        parse texts.

        :type grammar: WeightedGrammar
        :param grammar: The grammar used to parse texts.
        :type trace: int
        :param trace: The level of tracing that should be used when
            parsing a text.  ``0`` will generate no tracing output;
            and higher numbers will produce more verbose tracing
            output.
        """
        self._grammar = grammar
        self._trace = trace 
開發者ID:blackye,項目名稱:luscan-devel,代碼行數:17,代碼來源:viterbi.py

示例10: dep_parse

# 需要導入模塊: import nltk [as 別名]
# 或者: from nltk import parse [as 別名]
def dep_parse(self, sentence='every cat leaves'.split()):
        #Lazy-initialize the depparser
        if self.depparser is None:
            from nltk.parse import MaltParser
            self.depparser = MaltParser(tagger=self.get_pos_tagger())
        if not self.depparser._trained:
            self.train_depparser()

        return [self.depparser.parse(sentence, verbose=self.verbose)] 
開發者ID:blackye,項目名稱:luscan-devel,代碼行數:11,代碼來源:glue.py

示例11: process_parse_tree

# 需要導入模塊: import nltk [as 別名]
# 或者: from nltk import parse [as 別名]
def process_parse_tree(self, parse_tree):
        """
        Returns the Subject-Verb-Object Representation of a Parse Tree.
        Can Vary depending on number of 'sub-sentences' in a Parse Tree
        """
        self.tree_root = parse_tree
        # Step 1 - Extract all the parse trees that start with 'S'
        output_list = []
        output_dict = {}

        for idx, subtree in enumerate(parse_tree[0].subtrees()):
            subject = None
            predicate = None
            Object = None
            if subtree.label() in ["S", "SQ", "SBAR", "SBARQ", "SINV", "FRAG"]:
                children_list = subtree
                children_values = [each_child.label() for each_child in children_list]
                children_dict = dict(zip(children_values, children_list))

                # Extract Subject, Verb-Phrase, Objects from Sentence sub-trees
                if children_dict.get("NP") is not None:
                    subject = self.get_subject(children_dict["NP"])

                if children_dict.get("VP") is not None:
                    # Extract Verb and Object
                    # i+=1
                    # """
                    # if i==1:
                    #    pdb.set_trace()
                    # """
                    predicate = self.get_predicate(children_dict["VP"])
                    Object = self.get_object(children_dict["VP"])

                try:
                    if subject['subject'] and predicate['predicate'] and Object['object']:
                        output_dict['subject'] = subject['subject']
                        output_dict['predicate'] = predicate['predicate']
                        output_dict['object'] = Object['object']
                        output_list.append(output_dict)
                except Exception as e:
                    print(e)
                    continue

        return output_list 
開發者ID:klintan,項目名稱:py-nltk-svo,代碼行數:46,代碼來源:svo.py

示例12: demo

# 需要導入模塊: import nltk [as 別名]
# 或者: from nltk import parse [as 別名]
def demo(show_example=-1):
    from nltk.parse import MaltParser

    examples = [
        'David sees Mary',
        'David eats a sandwich',
        'every man chases a dog',
        'every man believes a dog sleeps',
        'John gives David a sandwich',
        'John chases himself',
    ]
    #                'John persuades David to order a pizza',
    #                'John tries to go',
    #                'John tries to find a unicorn',
    #                'John seems to vanish',
    #                'a unicorn seems to approach',
    #                'every big cat leaves',
    #                'every gray cat leaves',
    #                'every big gray cat leaves',
    #                'a former senator leaves',

    print('============== DEMO ==============')

    tagger = RegexpTagger(
        [
            ('^(David|Mary|John)$', 'NNP'),
            (
                '^(sees|eats|chases|believes|gives|sleeps|chases|persuades|tries|seems|leaves)$',
                'VB',
            ),
            ('^(go|order|vanish|find|approach)$', 'VB'),
            ('^(a)$', 'ex_quant'),
            ('^(every)$', 'univ_quant'),
            ('^(sandwich|man|dog|pizza|unicorn|cat|senator)$', 'NN'),
            ('^(big|gray|former)$', 'JJ'),
            ('^(him|himself)$', 'PRP'),
        ]
    )

    depparser = MaltParser(tagger=tagger)
    glue = Glue(depparser=depparser, verbose=False)

    for (i, sentence) in enumerate(examples):
        if i == show_example or show_example == -1:
            print('[[[Example %s]]]  %s' % (i, sentence))
            for reading in glue.parse_to_meaning(sentence.split()):
                print(reading.simplify())
            print('') 
開發者ID:V1EngineeringInc,項目名稱:V1EngineeringInc-Docs,代碼行數:50,代碼來源:glue.py


注:本文中的nltk.parse方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。