本文整理匯總了Python中nltk.parse方法的典型用法代碼示例。如果您正苦於以下問題:Python nltk.parse方法的具體用法?Python nltk.parse怎麽用?Python nltk.parse使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類nltk
的用法示例。
在下文中一共展示了nltk.parse方法的12個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __init__
# 需要導入模塊: import nltk [as 別名]
# 或者: from nltk import parse [as 別名]
def __init__(self, meaning, glue, indices=None):
if not indices:
indices = set()
if isinstance(meaning, string_types):
self.meaning = Expression.fromstring(meaning)
elif isinstance(meaning, Expression):
self.meaning = meaning
else:
raise RuntimeError('Meaning term neither string or expression: %s, %s' % (meaning, meaning.__class__))
if isinstance(glue, string_types):
self.glue = linearlogic.LinearLogicParser().parse(glue)
elif isinstance(glue, linearlogic.Expression):
self.glue = glue
else:
raise RuntimeError('Glue term neither string or expression: %s, %s' % (glue, glue.__class__))
self.indices = indices
示例2: dep_parse
# 需要導入模塊: import nltk [as 別名]
# 或者: from nltk import parse [as 別名]
def dep_parse(self, sentence):
"""
Return a dependency graph for the sentence.
:param sentence: the sentence to be parsed
:type sentence: list(str)
:rtype: DependencyGraph
"""
#Lazy-initialize the depparser
if self.depparser is None:
from nltk.parse import MaltParser
self.depparser = MaltParser(tagger=self.get_pos_tagger())
if not self.depparser._trained:
self.train_depparser()
return self.depparser.parse(sentence, verbose=self.verbose)
示例3: __init__
# 需要導入模塊: import nltk [as 別名]
# 或者: from nltk import parse [as 別名]
def __init__(self, meaning, glue, indices=None):
if not indices:
indices = set()
if isinstance(meaning, str):
self.meaning = LogicParser().parse(meaning)
elif isinstance(meaning, Expression):
self.meaning = meaning
else:
raise RuntimeError, 'Meaning term neither string or expression: %s, %s' % (meaning, meaning.__class__)
if isinstance(glue, str):
self.glue = linearlogic.LinearLogicParser().parse(glue)
elif isinstance(glue, linearlogic.Expression):
self.glue = glue
else:
raise RuntimeError, 'Glue term neither string or expression: %s, %s' % (glue, glue.__class__)
self.indices = indices
示例4: pos_tag_raw_text
# 需要導入模塊: import nltk [as 別名]
# 或者: from nltk import parse [as 別名]
def pos_tag_raw_text(self, text, as_tuple_list=True):
# Unfortunately for the moment there is no method to do sentence split + pos tagging in nltk.parse.corenlp
# Ony raw_tag_sents is available but assumes a list of str (so it assumes the sentence are already split)
# We create a small custom function highly inspired from raw_tag_sents to do both
def raw_tag_text():
"""
Perform tokenizing sentence splitting and PosTagging and keep the
sentence splits structure
"""
properties = {'annotators':'tokenize,ssplit,pos'}
tagged_data = self.parser.api_call(text, properties=properties)
for tagged_sentence in tagged_data['sentences']:
yield [(token['word'], token['pos']) for token in tagged_sentence['tokens']]
tagged_text = list(raw_tag_text())
if as_tuple_list:
return tagged_text
return '[ENDSENT]'.join(
[' '.join([tuple2str(tagged_token, self.separator) for tagged_token in sent]) for sent in tagged_text])
示例5: __init__
# 需要導入模塊: import nltk [as 別名]
# 或者: from nltk import parse [as 別名]
def __init__(self, meaning, glue, indices=None):
if not indices:
indices = set()
if isinstance(meaning, string_types):
self.meaning = Expression.fromstring(meaning)
elif isinstance(meaning, Expression):
self.meaning = meaning
else:
raise RuntimeError(
'Meaning term neither string or expression: %s, %s'
% (meaning, meaning.__class__)
)
if isinstance(glue, string_types):
self.glue = linearlogic.LinearLogicParser().parse(glue)
elif isinstance(glue, linearlogic.Expression):
self.glue = glue
else:
raise RuntimeError(
'Glue term neither string or expression: %s, %s'
% (glue, glue.__class__)
)
self.indices = indices
示例6: dep_parse
# 需要導入模塊: import nltk [as 別名]
# 或者: from nltk import parse [as 別名]
def dep_parse(self, sentence):
"""
Return a dependency graph for the sentence.
:param sentence: the sentence to be parsed
:type sentence: list(str)
:rtype: DependencyGraph
"""
# Lazy-initialize the depparser
if self.depparser is None:
from nltk.parse import MaltParser
self.depparser = MaltParser(tagger=self.get_pos_tagger())
if not self.depparser._trained:
self.train_depparser()
return self.depparser.parse(sentence, verbose=self.verbose)
示例7: parse
# 需要導入模塊: import nltk [as 別名]
# 或者: from nltk import parse [as 別名]
def parse(self, tokens):
# Inherit docs from ParserI
tokens = list(tokens)
self._grammar.check_coverage(tokens)
# The most likely constituent table. This table specifies the
# most likely constituent for a given span and type.
# Constituents can be either Trees or tokens. For Trees,
# the "type" is the Nonterminal for the tree's root node
# value. For Tokens, the "type" is the token's type.
# The table is stored as a dictionary, since it is sparse.
constituents = {}
# Initialize the constituents dictionary with the words from
# the text.
if self._trace: print ('Inserting tokens into the most likely'+
' constituents table...')
for index in range(len(tokens)):
token = tokens[index]
constituents[index,index+1,token] = token
if self._trace > 1:
self._trace_lexical_insertion(token, index, len(tokens))
# Consider each span of length 1, 2, ..., n; and add any trees
# that might cover that span to the constituents dictionary.
for length in range(1, len(tokens)+1):
if self._trace:
print ('Finding the most likely constituents'+
' spanning %d text elements...' % length)
for start in range(len(tokens)-length+1):
span = (start, start+length)
self._add_constituents_spanning(span, constituents,
tokens)
# Return the tree that spans the entire text & have the right cat
return constituents.get((0, len(tokens), self._grammar.start()))
示例8: demo
# 需要導入模塊: import nltk [as 別名]
# 或者: from nltk import parse [as 別名]
def demo(show_example=-1):
from nltk.parse import MaltParser
examples = ['David sees Mary',
'David eats a sandwich',
'every man chases a dog',
'every man believes a dog sleeps',
'John gives David a sandwich',
'John chases himself']
# 'John persuades David to order a pizza',
# 'John tries to go',
# 'John tries to find a unicorn',
# 'John seems to vanish',
# 'a unicorn seems to approach',
# 'every big cat leaves',
# 'every gray cat leaves',
# 'every big gray cat leaves',
# 'a former senator leaves',
print('============== DEMO ==============')
tagger = RegexpTagger(
[('^(David|Mary|John)$', 'NNP'),
('^(sees|eats|chases|believes|gives|sleeps|chases|persuades|tries|seems|leaves)$', 'VB'),
('^(go|order|vanish|find|approach)$', 'VB'),
('^(a)$', 'ex_quant'),
('^(every)$', 'univ_quant'),
('^(sandwich|man|dog|pizza|unicorn|cat|senator)$', 'NN'),
('^(big|gray|former)$', 'JJ'),
('^(him|himself)$', 'PRP')
])
depparser = MaltParser(tagger=tagger)
glue = Glue(depparser=depparser, verbose=False)
for (i, sentence) in enumerate(examples):
if i==show_example or show_example==-1:
print('[[[Example %s]]] %s' % (i, sentence))
for reading in glue.parse_to_meaning(sentence.split()):
print(reading.simplify())
print('')
示例9: __init__
# 需要導入模塊: import nltk [as 別名]
# 或者: from nltk import parse [as 別名]
def __init__(self, grammar, trace=0):
"""
Create a new ``ViterbiParser`` parser, that uses ``grammar`` to
parse texts.
:type grammar: WeightedGrammar
:param grammar: The grammar used to parse texts.
:type trace: int
:param trace: The level of tracing that should be used when
parsing a text. ``0`` will generate no tracing output;
and higher numbers will produce more verbose tracing
output.
"""
self._grammar = grammar
self._trace = trace
示例10: dep_parse
# 需要導入模塊: import nltk [as 別名]
# 或者: from nltk import parse [as 別名]
def dep_parse(self, sentence='every cat leaves'.split()):
#Lazy-initialize the depparser
if self.depparser is None:
from nltk.parse import MaltParser
self.depparser = MaltParser(tagger=self.get_pos_tagger())
if not self.depparser._trained:
self.train_depparser()
return [self.depparser.parse(sentence, verbose=self.verbose)]
示例11: process_parse_tree
# 需要導入模塊: import nltk [as 別名]
# 或者: from nltk import parse [as 別名]
def process_parse_tree(self, parse_tree):
"""
Returns the Subject-Verb-Object Representation of a Parse Tree.
Can Vary depending on number of 'sub-sentences' in a Parse Tree
"""
self.tree_root = parse_tree
# Step 1 - Extract all the parse trees that start with 'S'
output_list = []
output_dict = {}
for idx, subtree in enumerate(parse_tree[0].subtrees()):
subject = None
predicate = None
Object = None
if subtree.label() in ["S", "SQ", "SBAR", "SBARQ", "SINV", "FRAG"]:
children_list = subtree
children_values = [each_child.label() for each_child in children_list]
children_dict = dict(zip(children_values, children_list))
# Extract Subject, Verb-Phrase, Objects from Sentence sub-trees
if children_dict.get("NP") is not None:
subject = self.get_subject(children_dict["NP"])
if children_dict.get("VP") is not None:
# Extract Verb and Object
# i+=1
# """
# if i==1:
# pdb.set_trace()
# """
predicate = self.get_predicate(children_dict["VP"])
Object = self.get_object(children_dict["VP"])
try:
if subject['subject'] and predicate['predicate'] and Object['object']:
output_dict['subject'] = subject['subject']
output_dict['predicate'] = predicate['predicate']
output_dict['object'] = Object['object']
output_list.append(output_dict)
except Exception as e:
print(e)
continue
return output_list
示例12: demo
# 需要導入模塊: import nltk [as 別名]
# 或者: from nltk import parse [as 別名]
def demo(show_example=-1):
from nltk.parse import MaltParser
examples = [
'David sees Mary',
'David eats a sandwich',
'every man chases a dog',
'every man believes a dog sleeps',
'John gives David a sandwich',
'John chases himself',
]
# 'John persuades David to order a pizza',
# 'John tries to go',
# 'John tries to find a unicorn',
# 'John seems to vanish',
# 'a unicorn seems to approach',
# 'every big cat leaves',
# 'every gray cat leaves',
# 'every big gray cat leaves',
# 'a former senator leaves',
print('============== DEMO ==============')
tagger = RegexpTagger(
[
('^(David|Mary|John)$', 'NNP'),
(
'^(sees|eats|chases|believes|gives|sleeps|chases|persuades|tries|seems|leaves)$',
'VB',
),
('^(go|order|vanish|find|approach)$', 'VB'),
('^(a)$', 'ex_quant'),
('^(every)$', 'univ_quant'),
('^(sandwich|man|dog|pizza|unicorn|cat|senator)$', 'NN'),
('^(big|gray|former)$', 'JJ'),
('^(him|himself)$', 'PRP'),
]
)
depparser = MaltParser(tagger=tagger)
glue = Glue(depparser=depparser, verbose=False)
for (i, sentence) in enumerate(examples):
if i == show_example or show_example == -1:
print('[[[Example %s]]] %s' % (i, sentence))
for reading in glue.parse_to_meaning(sentence.split()):
print(reading.simplify())
print('')