本文整理匯總了Python中nltk.corpus.movie_reviews.categories方法的典型用法代碼示例。如果您正苦於以下問題:Python movie_reviews.categories方法的具體用法?Python movie_reviews.categories怎麽用?Python movie_reviews.categories使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類nltk.corpus.movie_reviews
的用法示例。
在下文中一共展示了movie_reviews.categories方法的2個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: load_movie_reviews
# 需要導入模塊: from nltk.corpus import movie_reviews [as 別名]
# 或者: from nltk.corpus.movie_reviews import categories [as 別名]
def load_movie_reviews():
# movie_reviews is a sizeable corpus to import, so only load it if we have to
from nltk.corpus import movie_reviews
try:
movie_reviews.categories()
except:
import nltk
print('This appears to be your first time using the NLTK Movie Reviews corpus. We will first download the necessary corpus (this is a one-time download that might take a little while')
nltk.download('movie_reviews')
from nltk.corpus import movie_reviews
raw_data = []
# NLTK's corpus is structured in an interesting way
# first iterate through the two categories (pos and neg)
for category in movie_reviews.categories():
if category == 'pos':
pretty_category_name = 'positive'
elif category == 'neg':
pretty_category_name = 'negative'
# each of these categories is just fileids, so grab those
for fileid in movie_reviews.fileids(category):
# then each review is a NLTK class where each item in that class instance is a word
review_words = movie_reviews.words(fileid)
review_text = ''
for word in review_words:
review_text += ' ' + word
review_dictionary = {
'text': review_text,
'sentiment': pretty_category_name
}
raw_data.append(review_dictionary)
return raw_data
示例2: getFeatures
# 需要導入模塊: from nltk.corpus import movie_reviews [as 別名]
# 或者: from nltk.corpus.movie_reviews import categories [as 別名]
def getFeatures(numWordsToUse):
# stopwords are common words that occur so frequently as to be useless for NLP
stopWords = set(stopwords.words('english'))
# read in all the words of each movie review, and it's associated sentiment
reviewDocuments = []
sentiment = []
for category in movie_reviews.categories():
for fileid in movie_reviews.fileids(category):
reviewWords = movie_reviews.words(fileid)
cleanedReview = []
for word in reviewWords:
if word not in stopWords:
cleanedReview.append(word)
reviewDocuments.append(cleanedReview)
if category == 'pos':
sentiment.append(1)
elif category == 'neg':
sentiment.append(0)
else:
print 'We are not sure what this category is: ' + category
global popularWords
formattedReviews, sentiment, popularWords = utils.nlpFeatureEngineering(
reviewDocuments, sentiment, 50, numWordsToUse, 'counts'
)
# transform list of dictionaries into a sparse matrix
sparseFeatures = dv.fit_transform(formattedReviews)
return sparseFeatures, sentiment