當前位置: 首頁>>代碼示例>>Python>>正文


Python compat.Fraction方法代碼示例

本文整理匯總了Python中nltk.compat.Fraction方法的典型用法代碼示例。如果您正苦於以下問題:Python compat.Fraction方法的具體用法?Python compat.Fraction怎麽用?Python compat.Fraction使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在nltk.compat的用法示例。


在下文中一共展示了compat.Fraction方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: method2

# 需要導入模塊: from nltk import compat [as 別名]
# 或者: from nltk.compat import Fraction [as 別名]
def method2(self, p_n, *args, **kwargs):
        """
        Smoothing method 2: Add 1 to both numerator and denominator from
        Chin-Yew Lin and Franz Josef Och (2004) Automatic evaluation of
        machine translation quality using longest common subsequence and
        skip-bigram statistics. In ACL04.
        """
        return [Fraction(p_i.numerator + 1, p_i.denominator + 1, _normalize=False) for p_i in p_n] 
開發者ID:MultiPath,項目名稱:NMT-RDPG,代碼行數:10,代碼來源:bleu.py

示例2: method2

# 需要導入模塊: from nltk import compat [as 別名]
# 或者: from nltk.compat import Fraction [as 別名]
def method2(self, p_n, *args, **kwargs):
        """
        Smoothing method 2: Add 1 to both numerator and denominator from 
        Chin-Yew Lin and Franz Josef Och (2004) Automatic evaluation of 
        machine translation quality using longest common subsequence and 
        skip-bigram statistics. In ACL04.
        """
        return [Fraction(p_i.numerator + 1, p_i.denominator + 1, _normalize=False) for p_i in p_n] 
開發者ID:SignalMedia,項目名稱:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda,代碼行數:10,代碼來源:bleu_score.py

示例3: test_unnoramlize_fraction

# 需要導入模塊: from nltk import compat [as 別名]
# 或者: from nltk.compat import Fraction [as 別名]
def test_unnoramlize_fraction(self):
        from fractions import Fraction as NativePythonFraction
        from nltk.compat import Fraction as NLTKFraction
        
        # The native fraction should throw a TypeError in Python < 3.5
        with self.assertRaises(TypeError):
            NativePythonFraction(0, 1000, _normalize=False)
        
        # Using nltk.compat.Fraction in Python < 3.5
        compat_frac = NLTKFraction(0, 1000, _normalize=False)
        # The numerator and denominator does not change. 
        assert compat_frac.numerator == 0
        assert compat_frac.denominator == 1000
        # The floating point value remains normalized. 
        assert float(compat_frac) == 0.0
        
        # Checks that the division is not divided by 
        # # by greatest common divisor (gcd).
        six_twelve = NLTKFraction(6, 12, _normalize=False)
        assert six_twelve.numerator == 6
        assert six_twelve.denominator == 12
        
        one_two = NLTKFraction(1, 2, _normalize=False)
        assert one_two.numerator == 1
        assert one_two.denominator == 2
        
        # Checks against the native fraction.
        six_twelve_original = NativePythonFraction(6, 12)
        # Checks that rational values of one_two and six_twelve is the same.
        assert float(one_two) == float(six_twelve) == float(six_twelve_original)
        
        # Checks that the fraction does get normalized, even when
        # _normalize == False when numerator is using native 
        # fractions.Fraction.from_float 
        assert NLTKFraction(3.142, _normalize=False) == NativePythonFraction(3.142) 
開發者ID:SignalMedia,項目名稱:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda,代碼行數:37,代碼來源:test_2x_compat.py

示例4: corpus_bleu

# 需要導入模塊: from nltk import compat [as 別名]
# 或者: from nltk.compat import Fraction [as 別名]
def corpus_bleu(list_of_references, hypotheses, weights=(0.25, 0.25, 0.25, 0.25),
                smoothing_function=None, auto_reweigh=False,
                emulate_multibleu=False):

    # Before proceeding to compute BLEU, perform sanity checks.

    p_numerators = Counter() # Key = ngram order, and value = no. of ngram matches.
    p_denominators = Counter() # Key = ngram order, and value = no. of ngram in ref.
    hyp_lengths, ref_lengths = 0, 0

    assert len(list_of_references) == len(hypotheses), "The number of hypotheses and their reference(s) should be the same"

    # Iterate through each hypothesis and their corresponding references.
    for references, hypothesis in zip(list_of_references, hypotheses):
        # For each order of ngram, calculate the numerator and
        # denominator for the corpus-level modified precision.
        for i, _ in enumerate(weights, start=1):
            p_i = modified_precision(references, hypothesis, i)
            p_numerators[i] += p_i.numerator
            p_denominators[i] += p_i.denominator

        # Calculate the hypothesis length and the closest reference length.
        # Adds them to the corpus-level hypothesis and reference counts.
        hyp_len =  len(hypothesis)
        hyp_lengths += hyp_len
        ref_lengths += closest_ref_length(references, hyp_len)

    # Calculate corpus-level brevity penalty.
    bp = brevity_penalty(ref_lengths, hyp_lengths)

    # Uniformly re-weighting based on maximum hypothesis lengths if largest
    # order of n-grams < 4 and weights is set at default.
    if auto_reweigh:
        if hyp_lengths < 4 and weights == (0.25, 0.25, 0.25, 0.25):
            weights = ( 1 / hyp_lengths ,) * hyp_lengths

    # Collects the various precision values for the different ngram orders.
    p_n = [Fraction(p_numerators[i], p_denominators[i], _normalize=False)
           for i, _ in enumerate(weights, start=1)]

    # Returns 0 if there's no matching n-grams
    # We only need to check for p_numerators[1] == 0, since if there's
    # no unigrams, there won't be any higher order ngrams.
    if p_numerators[1] == 0:
        return 0

    # If there's no smoothing, set use method0 from SmoothinFunction class.
    if not smoothing_function:
        smoothing_function = SmoothingFunction().method0
    # Smoothen the modified precision.
    # Note: smoothing_function() may convert values into floats;
    #       it tries to retain the Fraction object as much as the
    #       smoothing method allows.
    p_n = smoothing_function(p_n, references=references, hypothesis=hypothesis,
                             hyp_len=hyp_len, emulate_multibleu=emulate_multibleu)
    s = (w * math.log(p_i) for i, (w, p_i) in enumerate(zip(weights, p_n)))
    s =  bp * math.exp(math.fsum(s))
    return round(s, 4) if emulate_multibleu else s 
開發者ID:superthierry,項目名稱:NLG,代碼行數:60,代碼來源:bleu.py

示例5: modified_precision

# 需要導入模塊: from nltk import compat [as 別名]
# 或者: from nltk.compat import Fraction [as 別名]
def modified_precision(references, hypothesis, n):
    """
    Calculate modified ngram precision.

    The normal precision method may lead to some wrong translations with
    high-precision, e.g., the translation, in which a word of reference
    repeats several times, has very high precision.

    This function only returns the Fraction object that contains the numerator
    and denominator necessary to calculate the corpus-level precision.
    To calculate the modified precision for a single pair of hypothesis and
    references, cast the Fraction object into a float.

    The famous "the the the ... " example shows that you can get BLEU precision
    by duplicating high frequency words.



    :param references: A list of reference translations.
    :type references: list(list(str))
    :param hypothesis: A hypothesis translation.
    :type hypothesis: list(str)
    :param n: The ngram order.
    :type n: int
    :return: BLEU's modified precision for the nth order ngram.
    :rtype: Fraction
    """
    # Extracts all ngrams in hypothesis
    # Set an empty Counter if hypothesis is empty.
    counts = Counter(ngrams(hypothesis, n)) if len(hypothesis) >= n else Counter()
    # Extract a union of references' counts.
    ## max_counts = reduce(or_, [Counter(ngrams(ref, n)) for ref in references])
    max_counts = {}
    for reference in references:
        reference_counts = Counter(ngrams(reference, n)) if len(reference) >= n else Counter()
        for ngram in counts:
            max_counts[ngram] = max(max_counts.get(ngram, 0),
                                    reference_counts[ngram])

    # Assigns the intersection between hypothesis and references' counts.
    clipped_counts = {ngram: min(count, max_counts[ngram])
                      for ngram, count in counts.items()}

    numerator = sum(clipped_counts.values())
    # Ensures that denominator is minimum 1 to avoid ZeroDivisionError.
    # Usually this happens when the ngram order is > len(reference).
    denominator = max(1, sum(counts.values()))

    return Fraction(numerator, denominator, _normalize=False) 
開發者ID:superthierry,項目名稱:NLG,代碼行數:51,代碼來源:bleu.py


注:本文中的nltk.compat.Fraction方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。