當前位置: 首頁>>代碼示例>>Python>>正文


Python classify.accuracy方法代碼示例

本文整理匯總了Python中nltk.classify.accuracy方法的典型用法代碼示例。如果您正苦於以下問題:Python classify.accuracy方法的具體用法?Python classify.accuracy怎麽用?Python classify.accuracy使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在nltk.classify的用法示例。


在下文中一共展示了classify.accuracy方法的2個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: demo

# 需要導入模塊: from nltk import classify [as 別名]
# 或者: from nltk.classify import accuracy [as 別名]
def demo():

    def gender_features(word):
        return {'last_letter': word[-1], 'penultimate_letter': word[-2]}

    from nltk.classify import accuracy
    from nltk.corpus import names


    import random
    names = ([(name, 'male') for name in names.words('male.txt')] +
             [(name, 'female') for name in names.words('female.txt')])
    import random
    random.seed(60221023)
    random.shuffle(names)

    featuresets = [(gender_features(n), g) for (n,g) in names]
    train_set, test_set = featuresets[500:], featuresets[:500]

    print '--- nltk.classify.svm demo ---'
    print 'Number of training examples:', len(train_set)
    classifier = SvmClassifier.train(train_set)
    print 'Total SVM dimensions:', len(classifier._svmfeatureindex)
    print 'Label mapping:', classifier._labelmapping
    print '--- Processing an example instance ---'
    print 'Reference instance:', names[0]
    print 'NLTK-format features:\n    ' + str(test_set[0])
    print 'SVMlight-format features:\n    ' + str(map_instance_to_svm(test_set[0], classifier._labelmapping, classifier._svmfeatureindex))
    distr = classifier.prob_classify(test_set[0][0])
    print 'Instance classification and confidence:', distr.max(), distr.prob(distr.max())
    print '--- Measuring classifier performance ---'
    print 'Overall accuracy:', accuracy(classifier, test_set) 
開發者ID:blackye,項目名稱:luscan-devel,代碼行數:34,代碼來源:svm.py

示例2: evaluate

# 需要導入模塊: from nltk import classify [as 別名]
# 或者: from nltk.classify import accuracy [as 別名]
def evaluate(training, tesing, classifier):
  print ('Training Accuracy is ' + str(classify.accuracy(classifier,train_set)))
  print ('Testing Accuracy i ' + str(classify.accuracy(classifier,test_set))) 
開發者ID:PacktPublishing,項目名稱:Mastering-Machine-Learning-for-Penetration-Testing,代碼行數:5,代碼來源:SpamDetection_NLTK.py


注:本文中的nltk.classify.accuracy方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。