本文整理匯總了Python中nipype.utils.filemanip.fname_presuffix方法的典型用法代碼示例。如果您正苦於以下問題:Python filemanip.fname_presuffix方法的具體用法?Python filemanip.fname_presuffix怎麽用?Python filemanip.fname_presuffix使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類nipype.utils.filemanip
的用法示例。
在下文中一共展示了filemanip.fname_presuffix方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _run_interface
# 需要導入模塊: from nipype.utils import filemanip [as 別名]
# 或者: from nipype.utils.filemanip import fname_presuffix [as 別名]
def _run_interface(self, runtime):
import nibabel as nib
from nipype.utils.filemanip import fname_presuffix
bold_img = nib.load(self.inputs.timeseries_file)
bold_mask_img = nib.load(self.inputs.mask_file)
bold_data = bold_img.get_fdata()
bold_mask = bold_mask_img.get_fdata().astype(bool)
outliers = is_outlier(bold_data[bold_mask].T, thresh=self.inputs.threshold)
out = fname_presuffix(self.inputs.timeseries_file, suffix='_censored')
bold_img.__class__(bold_data[..., ~outliers],
bold_img.affine, bold_img.header).to_filename(out)
self._results['censored_file'] = out
self._results['outliers'] = outliers
return runtime
示例2: apply_lut
# 需要導入模塊: from nipype.utils import filemanip [as 別名]
# 或者: from nipype.utils.filemanip import fname_presuffix [as 別名]
def apply_lut(in_dseg, lut, newpath=None):
"""Map the input discrete segmentation to a new label set (lookup table, LUT)."""
import numpy as np
import nibabel as nb
from nipype.utils.filemanip import fname_presuffix
if newpath is None:
from os import getcwd
newpath = getcwd()
out_file = fname_presuffix(in_dseg, suffix='_dseg', newpath=newpath)
lut = np.array(lut, dtype='int16')
segm = nb.load(in_dseg)
hdr = segm.header.copy()
hdr.set_data_dtype('int16')
segm.__class__(lut[np.asanyarray(segm.dataobj, dtype=int)].astype('int16'),
segm.affine, hdr).to_filename(out_file)
return out_file
示例3: _run_interface
# 需要導入模塊: from nipype.utils import filemanip [as 別名]
# 或者: from nipype.utils.filemanip import fname_presuffix [as 別名]
def _run_interface(self, runtime):
in_file = nb.load(self.inputs.in_file)
wm_mask = nb.load(self.inputs.wm_mask).get_data()
wm_mask[wm_mask < 0.9] = 0
wm_mask[wm_mask > 0] = 1
wm_mask = wm_mask.astype(np.uint8)
if self.inputs.erodemsk:
# Create a structural element to be used in an opening operation.
struc = nd.generate_binary_structure(3, 2)
# Perform an opening operation on the background data.
wm_mask = nd.binary_erosion(wm_mask, structure=struc).astype(np.uint8)
data = in_file.get_data()
data *= 1000.0 / np.median(data[wm_mask > 0])
out_file = fname_presuffix(
self.inputs.in_file, suffix="_harmonized", newpath="."
)
in_file.__class__(data, in_file.affine, in_file.header).to_filename(out_file)
self._results["out_file"] = out_file
return runtime
示例4: _run_interface
# 需要導入模塊: from nipype.utils import filemanip [as 別名]
# 或者: from nipype.utils.filemanip import fname_presuffix [as 別名]
def _run_interface(self, runtime):
ext = ".nii.gz" if self.inputs.compress else ".nii"
self._results["out_file"] = fname_presuffix(
self.inputs.in_files[0],
suffix="_merged" + ext,
newpath=runtime.cwd,
use_ext=False,
)
new_nii = concat_imgs(self.inputs.in_files, dtype=self.inputs.dtype)
if isdefined(self.inputs.header_source):
src_hdr = nb.load(self.inputs.header_source).header
new_nii.header.set_xyzt_units(t=src_hdr.get_xyzt_units()[-1])
new_nii.header.set_zooms(
list(new_nii.header.get_zooms()[:3]) + [src_hdr.get_zooms()[3]]
)
new_nii.to_filename(self._results["out_file"])
return runtime
示例5: _enhance_t2_contrast
# 需要導入模塊: from nipype.utils import filemanip [as 別名]
# 或者: from nipype.utils.filemanip import fname_presuffix [as 別名]
def _enhance_t2_contrast(in_file, newpath=None, offset=0.5):
"""
Enhance the T2* contrast of an EPI dataset.
Performs a logarithmic transformation of intensity that
effectively splits brain and background and makes the
overall distribution more Gaussian.
"""
out_file = fname_presuffix(in_file, suffix="_t1enh", newpath=newpath)
nii = nb.load(in_file)
data = nii.get_fdata()
maxd = data.max()
newdata = np.log(offset + data / maxd)
newdata -= newdata.min()
newdata *= maxd / newdata.max()
nii = nii.__class__(newdata, nii.affine, nii.header)
nii.to_filename(out_file)
return out_file
示例6: _run_interface
# 需要導入模塊: from nipype.utils import filemanip [as 別名]
# 或者: from nipype.utils.filemanip import fname_presuffix [as 別名]
def _run_interface(self, runtime):
gii = nb.load(self.inputs.in_file)
data = gii.darrays[0].data
if self.inputs.itk_lps: # ITK: flip X and Y around 0
data[:, :2] *= -1
# antsApplyTransformsToPoints requires 5 cols with headers
csvdata = np.hstack((data, np.zeros((data.shape[0], 3))))
out_file = fname_presuffix(
self.inputs.in_file, newpath=runtime.cwd, use_ext=False, suffix="points.csv"
)
np.savetxt(
out_file,
csvdata,
delimiter=",",
header="x,y,z,t,label,comment",
fmt=["%.5f"] * 4 + ["%d"] * 2,
)
self._results["out_file"] = out_file
return runtime
示例7: _run_interface
# 需要導入模塊: from nipype.utils import filemanip [as 別名]
# 或者: from nipype.utils.filemanip import fname_presuffix [as 別名]
def _run_interface(self, runtime):
out_file = fname_presuffix(
self.inputs.in_file,
suffix="_motion.tsv",
newpath=runtime.cwd,
use_ext=False,
)
data = np.loadtxt(self.inputs.in_file)
np.savetxt(
out_file,
data,
delimiter="\t",
header="\t".join(self.inputs.columns),
comments="",
)
self._results["out_file"] = out_file
return runtime
示例8: _run_interface
# 需要導入模塊: from nipype.utils import filemanip [as 別名]
# 或者: from nipype.utils.filemanip import fname_presuffix [as 別名]
def _run_interface(self, runtime):
if self.inputs.out_file is None:
self._results["out_file"] = fname_presuffix(
self.inputs.metadata_files[0],
suffix="_compcor.svg",
use_ext=False,
newpath=runtime.cwd,
)
else:
self._results["out_file"] = self.inputs.out_file
compcor_variance_plot(
metadata_files=self.inputs.metadata_files,
metadata_sources=self.inputs.metadata_sources,
output_file=self._results["out_file"],
varexp_thresh=self.inputs.variance_thresholds,
)
return runtime
示例9: _mat2itk
# 需要導入模塊: from nipype.utils import filemanip [as 別名]
# 或者: from nipype.utils.filemanip import fname_presuffix [as 別名]
def _mat2itk(args):
from nipype.interfaces.c3 import C3dAffineTool
from nipype.utils.filemanip import fname_presuffix
in_file, in_ref, in_src, index, newpath = args
# Generate a temporal file name
out_file = fname_presuffix(in_file, suffix="_itk-%05d.txt" % index, newpath=newpath)
# Run c3d_affine_tool
C3dAffineTool(
transform_file=in_file,
reference_file=in_ref,
source_file=in_src,
fsl2ras=True,
itk_transform=out_file,
resource_monitor=False,
).run()
transform = "#Transform %d\n" % index
with open(out_file) as itkfh:
transform += "".join(itkfh.readlines()[2:])
return (index, transform)
示例10: demean
# 需要導入模塊: from nipype.utils import filemanip [as 別名]
# 或者: from nipype.utils.filemanip import fname_presuffix [as 別名]
def demean(in_file, in_mask, only_mask=False, newpath=None):
"""Demean ``in_file`` within the mask defined by ``in_mask``."""
import os
import numpy as np
import nibabel as nb
from nipype.utils.filemanip import fname_presuffix
out_file = fname_presuffix(in_file, suffix="_demeaned", newpath=os.getcwd())
nii = nb.load(in_file)
msk = np.asanyarray(nb.load(in_mask).dataobj)
data = nii.get_fdata()
if only_mask:
data[msk > 0] -= np.median(data[msk > 0])
else:
data -= np.median(data[msk > 0])
nb.Nifti1Image(data, nii.affine, nii.header).to_filename(out_file)
return out_file
示例11: _run_interface
# 需要導入模塊: from nipype.utils import filemanip [as 別名]
# 或者: from nipype.utils.filemanip import fname_presuffix [as 別名]
def _run_interface(self, runtime):
if isdefined(self.inputs.output_file):
out_file = self.inputs.output_file
else:
out_file = fname_presuffix(
self.inputs.confounds_file,
suffix="_expansion.tsv",
newpath=runtime.cwd,
use_ext=False,
)
confounds_data = pd.read_csv(self.inputs.confounds_file, sep="\t")
_, confounds_data = parse_formula(
model_formula=self.inputs.model_formula,
parent_data=confounds_data,
unscramble=True,
)
confounds_data.to_csv(out_file, sep="\t", index=False, na_rep="n/a")
self._results["confounds_file"] = out_file
return runtime
示例12: _run_interface
# 需要導入模塊: from nipype.utils import filemanip [as 別名]
# 或者: from nipype.utils.filemanip import fname_presuffix [as 別名]
def _run_interface(self, runtime):
img = nb.load(self.inputs.in_file)
msknii = nb.load(self.inputs.in_mask)
msk = msknii.get_fdata() > self.inputs.threshold
self._results["out_file"] = fname_presuffix(
self.inputs.in_file, suffix="_masked", newpath=runtime.cwd
)
if img.dataobj.shape[:3] != msk.shape:
raise ValueError("Image and mask sizes do not match.")
if not np.allclose(img.affine, msknii.affine):
raise ValueError("Image and mask affines are not similar enough.")
if img.dataobj.ndim == msk.ndim + 1:
msk = msk[..., np.newaxis]
masked = img.__class__(img.dataobj * msk, None, img.header)
masked.to_filename(self._results["out_file"])
return runtime
示例13: dseg_label
# 需要導入模塊: from nipype.utils import filemanip [as 別名]
# 或者: from nipype.utils.filemanip import fname_presuffix [as 別名]
def dseg_label(in_seg, label, newpath=None):
"""Extract a particular label from a discrete segmentation."""
from pathlib import Path
import nibabel as nb
import numpy as np
from nipype.utils.filemanip import fname_presuffix
newpath = Path(newpath or ".")
nii = nb.load(in_seg)
data = np.int16(nii.dataobj) == label
out_file = fname_presuffix(in_seg, suffix="_mask", newpath=str(newpath.absolute()))
new = nii.__class__(data, nii.affine, nii.header)
new.set_data_dtype(np.uint8)
new.to_filename(out_file)
return out_file
示例14: _select_labels
# 需要導入模塊: from nipype.utils import filemanip [as 別名]
# 或者: from nipype.utils.filemanip import fname_presuffix [as 別名]
def _select_labels(in_segm, labels):
from os import getcwd
import numpy as np
import nibabel as nb
from nipype.utils.filemanip import fname_presuffix
out_files = []
cwd = getcwd()
nii = nb.load(in_segm)
label_data = np.asanyarray(nii.dataobj).astype("uint8")
for label in labels:
newnii = nii.__class__(np.uint8(label_data == label), nii.affine, nii.header)
newnii.set_data_dtype("uint8")
out_file = fname_presuffix(in_segm, suffix="_class-%02d" % label, newpath=cwd)
newnii.to_filename(out_file)
out_files.append(out_file)
return out_files
示例15: _run_interface
# 需要導入模塊: from nipype.utils import filemanip [as 別名]
# 或者: from nipype.utils.filemanip import fname_presuffix [as 別名]
def _run_interface(self, runtime):
import matplotlib
matplotlib.use('Agg')
import seaborn as sns
from matplotlib import pyplot as plt
sns.set_style('white')
plt.rcParams['svg.fonttype'] = 'none'
plt.rcParams['image.interpolation'] = 'nearest'
data = self._load_data(self.inputs.data)
out_name = fname_presuffix(self.inputs.data,
suffix='.' + self.inputs.image_type,
newpath=runtime.cwd,
use_ext=False)
self._visualize(data, out_name)
self._results['figure'] = out_name
return runtime