當前位置: 首頁>>代碼示例>>Python>>正文


Python input_data.NiftiLabelsMasker方法代碼示例

本文整理匯總了Python中nilearn.input_data.NiftiLabelsMasker方法的典型用法代碼示例。如果您正苦於以下問題:Python input_data.NiftiLabelsMasker方法的具體用法?Python input_data.NiftiLabelsMasker怎麽用?Python input_data.NiftiLabelsMasker使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在nilearn.input_data的用法示例。


在下文中一共展示了input_data.NiftiLabelsMasker方法的4個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _run_interface

# 需要導入模塊: from nilearn import input_data [as 別名]
# 或者: from nilearn.input_data import NiftiLabelsMasker [as 別名]
def _run_interface(self, runtime):
        fname = self.inputs.fmri_denoised
        bold_img = nb.load(fname)
        masker = NiftiLabelsMasker(labels_img=self.inputs.parcellation, standardize=True)
        time_series = masker.fit_transform(bold_img, confounds=None)

        corr_measure = ConnectivityMeasure(kind='correlation')
        corr_mat = corr_measure.fit_transform([time_series])[0]
        _, base, _ = split_filename(fname)

        conn_file = f'{self.inputs.output_dir}/{base}_conn_mat.npy'

        carpet_plot_file = join(self.inputs.output_dir, f'{base}_carpet_plot.png')
        matrix_plot_file = join(self.inputs.output_dir, f'{base}_matrix_plot.png')

        create_carpetplot(time_series, carpet_plot_file)
        mplot = plot_matrix(corr_mat,  vmin=-1, vmax=1)
        mplot.figure.savefig(matrix_plot_file)

        np.save(conn_file, corr_mat)

        self._results['corr_mat'] = conn_file
        self._results['carpet_plot'] = carpet_plot_file
        self._results['matrix_plot'] = matrix_plot_file

        return runtime 
開發者ID:compneuro-ncu,項目名稱:fmridenoise,代碼行數:28,代碼來源:connectivity.py

示例2: create_carpetplot

# 需要導入模塊: from nilearn import input_data [as 別名]
# 或者: from nilearn.input_data import NiftiLabelsMasker [as 別名]
def create_carpetplot(time_series: np.ndarray, out_fname: str,
                      dpi=300, figsize=(8, 3), format='png'):
    """Generates and saves carpet plot for rois timecourses.

    Args:
        time_series: Timecourse array of size N_timepoints x N_rois. Output of
            fit_transform() NiftiLabelsMasker method.
        out_fname: Carpetplot output filename.
        dpi (:obj:`int`, optional): Dots per inch (default 300).
        figsize (:obj:`tuple`, optional): Size of the figure in inches
            (default (3,8))
        format (:obj:`str`, optional): Image format. Available options include
            'png', 'pdf', 'ps', 'eps' and 'svg'.
    """
    if not isinstance(time_series, np.ndarray):
        raise TypeError('time series should be np.ndarray')

    fig = plt.figure(figsize=figsize, dpi=dpi)
    ax = fig.add_subplot(111)

    ax.imshow(time_series.T, cmap='gray')
    ax.set_xlabel('volume')
    ax.set_ylabel('roi')
    ax.set_yticks([])

    try:
        fig.savefig(out_fname, format=format,
                    transparent=True, bbox_inches='tight')
    except FileNotFoundError:
        print(f'{out_fname} directory not found') 
開發者ID:compneuro-ncu,項目名稱:fmridenoise,代碼行數:32,代碼來源:quality_measures.py

示例3: test_ibma_with_custom_masker

# 需要導入模塊: from nilearn import input_data [as 別名]
# 或者: from nilearn.input_data import NiftiLabelsMasker [as 別名]
def test_ibma_with_custom_masker(testdata):
    """ Ensure voxel-to-ROI reduction works. """
    atlas = op.join(get_resource_path(), 'atlases',
                    'HarvardOxford-cort-maxprob-thr25-2mm.nii.gz')
    masker = NiftiLabelsMasker(atlas)
    meta = ibma.Fishers(mask=masker)
    meta.fit(testdata['dset_z'])
    assert isinstance(meta.results, nimare.base.MetaResult)
    assert meta.results.maps['z'].shape == (48, ) 
開發者ID:neurostuff,項目名稱:NiMARE,代碼行數:11,代碼來源:test_ibma.py

示例4: correlation_matrix

# 需要導入模塊: from nilearn import input_data [as 別名]
# 或者: from nilearn.input_data import NiftiLabelsMasker [as 別名]
def correlation_matrix(ts,atlas,
	confounds=None,
	mask=None,
	loud=False,
	structure_names=[],
	save_as='',
	low_pass=0.25,
	high_pass=0.004,
	smoothing_fwhm=.3,
	):
	"""Return a CSV file containing correlations between ROIs.

	Parameters
	----------
	ts : str
		Path to the 4D NIfTI timeseries file on which to perform the connectivity analysis.
	confounds : 2D array OR path to CSV file
		Array/CSV file containing confounding time-series to be regressed out before FC analysis.
	atlas : str, optional
		Path to a 3D NIfTI-like binary label file designating ROIs.
	structure_names : list, optional
		Ordered list of all structure names in atlas (length N).
	save_as : str
		Path under which to save the Pandas DataFrame conttaining the NxN correlation matrix.
	"""
	ts = path.abspath(path.expanduser(ts))
	if isinstance(atlas,str):
		atlas = path.abspath(path.expanduser(atlas))
	if mask:
		mask = path.abspath(path.expanduser(mask))
	tr = nib.load(ts).header['pixdim'][0]
	labels_masker = NiftiLabelsMasker(
		labels_img=atlas,
		mask_img=mask,
		standardize=True,
		memory='nilearn_cache',
		verbose=5,
		low_pass=low_pass,
		high_pass = high_pass,
		smoothing_fwhm=smoothing_fwhm,
		t_r=tr,
		)
	#TODO: test confounds with physiological signals
	if(confounds):
		confounds = path.abspath(path.expanduser(confounds))
		timeseries = labels_masker.fit_transform(ts, confounds=confounds)
	else:
		timeseries = labels_masker.fit_transform(ts)
	correlation_measure = ConnectivityMeasure(kind='correlation')
	correlation_matrix = correlation_measure.fit_transform([timeseries])[0]
	if structure_names:
		df = pd.DataFrame(columns=structure_names, index=structure_names, data=correlation_matrix)
	else:
		df = pd.DataFrame(data=correlation_matrix)
	if save_as:
		save_dir = path.dirname(save_as)
		if not path.exists(save_dir):
			makedirs(save_dir)
		df.to_csv(save_as) 
開發者ID:IBT-FMI,項目名稱:SAMRI,代碼行數:61,代碼來源:fc.py


注:本文中的nilearn.input_data.NiftiLabelsMasker方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。