當前位置: 首頁>>代碼示例>>Python>>正文


Python image.resample_to_img方法代碼示例

本文整理匯總了Python中nilearn.image.resample_to_img方法的典型用法代碼示例。如果您正苦於以下問題:Python image.resample_to_img方法的具體用法?Python image.resample_to_img怎麽用?Python image.resample_to_img使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在nilearn.image的用法示例。


在下文中一共展示了image.resample_to_img方法的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: report_slm_oasis

# 需要導入模塊: from nilearn import image [as 別名]
# 或者: from nilearn.image import resample_to_img [as 別名]
def report_slm_oasis():  # pragma: no cover
    n_subjects = 5  # more subjects requires more memory
    oasis_dataset = nilearn.datasets.fetch_oasis_vbm(n_subjects=n_subjects)
    # Resample the images, since this mask has a different resolution
    mask_img = resample_to_img(nilearn.datasets.fetch_icbm152_brain_gm_mask(),
                               oasis_dataset.gray_matter_maps[0],
                               interpolation='nearest',
                               )
    design_matrix = _make_design_matrix_slm_oasis(oasis_dataset, n_subjects)
    second_level_model = SecondLevelModel(smoothing_fwhm=2.0, mask=mask_img)
    second_level_model.fit(oasis_dataset.gray_matter_maps,
                           design_matrix=design_matrix)

    contrast = [[1, 0, 0], [0, 1, 0]]
    report = make_glm_report(
            model=second_level_model,
            contrasts=contrast,
            bg_img=nilearn.datasets.fetch_icbm152_2009()['t1'],
            height_control=None,
    )
    output_filename = 'generated_report_slm_oasis.html'
    output_filepath = os.path.join(REPORTS_DIR, output_filename)
    report.save_as_html(output_filepath)
    report.get_iframe() 
開發者ID:nilearn,項目名稱:nistats,代碼行數:26,代碼來源:_glm_reporter_visual_inspection_suite_.py

示例2: inject_skullstripped

# 需要導入模塊: from nilearn import image [as 別名]
# 或者: from nilearn.image import resample_to_img [as 別名]
def inject_skullstripped(subjects_dir, subject_id, skullstripped):
    mridir = op.join(subjects_dir, subject_id, "mri")
    t1 = op.join(mridir, "T1.mgz")
    bm_auto = op.join(mridir, "brainmask.auto.mgz")
    bm = op.join(mridir, "brainmask.mgz")

    if not op.exists(bm_auto):
        img = nb.load(t1)
        mask = nb.load(skullstripped)
        bmask = new_img_like(mask, np.asanyarray(mask.dataobj) > 0)
        resampled_mask = resample_to_img(bmask, img, "nearest")
        masked_image = new_img_like(
            img, np.asanyarray(img.dataobj) * resampled_mask.dataobj
        )
        masked_image.to_filename(bm_auto)

    if not op.exists(bm):
        copyfile(bm_auto, bm, copy=True, use_hardlink=True)

    return subjects_dir, subject_id 
開發者ID:nipreps,項目名稱:niworkflows,代碼行數:22,代碼來源:freesurfer.py

示例3: augment_data

# 需要導入模塊: from nilearn import image [as 別名]
# 或者: from nilearn.image import resample_to_img [as 別名]
def augment_data(data, truth, affine, scale_deviation=None, flip=True):
    n_dim = len(truth.shape)
    if scale_deviation:
        scale_factor = random_scale_factor(n_dim, std=scale_deviation)
    else:
        scale_factor = None
    if flip:
        flip_axis = random_flip_dimensions(n_dim)
    else:
        flip_axis = None
    data_list = list()
    for data_index in range(data.shape[0]):
        image = get_image(data[data_index], affine)
        data_list.append(resample_to_img(distort_image(image, flip_axis=flip_axis,
                                                       scale_factor=scale_factor), image,
                                         interpolation="continuous").get_data())
    data = np.asarray(data_list)
    truth_image = get_image(truth, affine)
    truth_data = resample_to_img(distort_image(truth_image, flip_axis=flip_axis, scale_factor=scale_factor),
                                 truth_image, interpolation="nearest").get_data()
    return data, truth_data 
開發者ID:ellisdg,項目名稱:3DUnetCNN,代碼行數:23,代碼來源:augment.py

示例4: apply_mask

# 需要導入模塊: from nilearn import image [as 別名]
# 或者: from nilearn.image import resample_to_img [as 別名]
def apply_mask(self, mask, resample_mask_to_brain=False):
        """ Mask Brain_Data instance

        Note target data will be resampled into the same space as the mask. If you would like the mask
        resampled into the Brain_Data space, then set resample_mask_to_brain=True.

        Args:
            mask: (Brain_Data or nifti object) mask to apply to Brain_Data object.
            resample_mask_to_brain: (bool) Will resample mask to brain space before applying mask (default=False).

        Returns:
            masked: (Brain_Data) masked Brain_Data object

        """

        masked = deepcopy(self)
        mask = check_brain_data(mask)
        if not check_brain_data_is_single(mask):
            raise ValueError('Mask must be a single image')

        n_vox = len(self) if check_brain_data_is_single(self) else self.shape()[1]
        if resample_mask_to_brain: 
            mask = resample_to_img(mask.to_nifti(), masked.to_nifti())
            mask = check_brain_data(mask, masked.mask)

        nifti_masker = NiftiMasker(mask_img=mask.to_nifti()).fit()

        if n_vox == len(mask):
            if check_brain_data_is_single(masked):
                masked.data = masked.data[mask.data.astype(bool)]
            else:
                masked.data = masked.data[:, mask.data.astype(bool)]
        else:
            masked.data = nifti_masker.fit_transform(masked.to_nifti())
        masked.nifti_masker = nifti_masker
        if (len(masked.shape()) > 1) & (masked.shape()[0] == 1):
            masked.data = masked.data.flatten()
        return masked 
開發者ID:cosanlab,項目名稱:nltools,代碼行數:40,代碼來源:brain_data.py

示例5: _post_run_hook

# 需要導入模塊: from nilearn import image [as 別名]
# 或者: from nilearn.image import resample_to_img [as 別名]
def _post_run_hook(self, runtime):
        self._fixed_image = self.inputs.after
        self._moving_image = self.inputs.before
        if self.inputs.base == "before":
            resampled_after = nli.resample_to_img(self._fixed_image, self._moving_image)
            fname = fname_presuffix(
                self._fixed_image, suffix="_resampled", newpath=runtime.cwd
            )
            resampled_after.to_filename(fname)
            self._fixed_image = fname
        else:
            resampled_before = nli.resample_to_img(
                self._moving_image, self._fixed_image
            )
            fname = fname_presuffix(
                self._moving_image, suffix="_resampled", newpath=runtime.cwd
            )
            resampled_before.to_filename(fname)
            self._moving_image = fname
        self._contour = self.inputs.wm_seg if isdefined(self.inputs.wm_seg) else None
        NIWORKFLOWS_LOG.info(
            "Report - setting before (%s) and after (%s) images",
            self._fixed_image,
            self._moving_image,
        )

        runtime = super(ResampleBeforeAfterRPT, self)._post_run_hook(runtime)
        NIWORKFLOWS_LOG.info("Successfully created report (%s)", self._out_report)
        os.unlink(fname)

        return runtime 
開發者ID:nipreps,項目名稱:niworkflows,代碼行數:33,代碼來源:registration.py

示例6: peaks2maps_workflow

# 需要導入模塊: from nilearn import image [as 別名]
# 或者: from nilearn.image import resample_to_img [as 別名]
def peaks2maps_workflow(sleuth_file, output_dir=None, prefix=None, n_iters=10000):
    """
    """
    LGR.info('Loading coordinates...')
    dset = convert_sleuth_to_dataset(sleuth_file)

    LGR.info('Reconstructing unthresholded maps...')
    k = Peaks2MapsKernel(resample_to_mask=False)
    imgs = k.transform(dset, return_type='image')

    mask_img = resample_to_img(dset.mask, imgs[0], interpolation='nearest')
    z_data = apply_mask(imgs, mask_img)

    LGR.info('Estimating the null distribution...')
    res = rfx_glm(z_data, null='empirical', n_iters=n_iters)
    res = MetaResult('rfx_glm', maps=res, mask=mask_img)

    if output_dir is None:
        output_dir = os.path.dirname(os.path.abspath(sleuth_file))
    else:
        pathlib.Path(output_dir).mkdir(parents=True, exist_ok=True)

    if prefix is None:
        base = os.path.basename(sleuth_file)
        prefix, _ = os.path.splitext(base)
        prefix += '_'

    LGR.info('Saving output maps...')
    res.save_maps(output_dir=output_dir, prefix=prefix) 
開發者ID:neurostuff,項目名稱:NiMARE,代碼行數:31,代碼來源:peaks2maps.py

示例7: get_studies_by_mask

# 需要導入模塊: from nilearn import image [as 別名]
# 或者: from nilearn.image import resample_to_img [as 別名]
def get_studies_by_mask(self, mask):
        """
        Extract list of studies with at least one coordinate in mask.

        Parameters
        ----------
        mask : img_like
            Mask across which to search for coordinates.

        Returns
        -------
        found_ids : :obj:`list`
            A list of IDs from the Dataset with at least one focus in the mask.
        """
        from scipy.spatial.distance import cdist
        if isinstance(mask, str):
            mask = nib.load(mask)

        dset_mask = self.masker.mask_img
        if not np.array_equal(dset_mask.affine, mask.affine):
            from nilearn.image import resample_to_img
            mask = resample_to_img(mask, dset_mask, interpolation='nearest')
        mask_ijk = np.vstack(np.where(mask.get_fdata())).T
        distances = cdist(mask_ijk, self.coordinates[['i', 'j', 'k']].values)
        distances = np.any(distances == 0, axis=0)
        found_ids = list(self.coordinates.loc[distances, 'id'].unique())
        return found_ids 
開發者ID:neurostuff,項目名稱:NiMARE,代碼行數:29,代碼來源:dataset.py

示例8: crop_nifti

# 需要導入模塊: from nilearn import image [as 別名]
# 或者: from nilearn.image import resample_to_img [as 別名]
def crop_nifti(input_img, ref_crop):
    """

    :param input_img:
    :param crop_sagittal:
    :param crop_coronal:
    :param crop_axial:
    :return:
    """

    import nibabel as nib
    import os
    import numpy as np
    from nilearn.image import resample_img, resample_to_img
    from nibabel.spatialimages import SpatialImage

    basedir = os.getcwd()
    # crop_ref = crop_img(ref_img, rtol=0.5)
    # crop_ref.to_filename(os.path.join(basedir, os.path.basename(input_img).split('.nii')[0] + '_cropped_template.nii.gz'))
    # crop_template = os.path.join(basedir, os.path.basename(input_img).split('.nii')[0] + '_cropped_template.nii.gz')

    # resample the individual MRI onto the cropped template image
    crop_img = resample_to_img(input_img, ref_crop, force_resample=True)
    crop_img.to_filename(os.path.join(basedir, os.path.basename(input_img).split('.nii')[0] + '_cropped.nii.gz'))

    output_img = os.path.join(basedir, os.path.basename(input_img).split('.nii')[0] + '_cropped.nii.gz')
    crop_template = ref_crop

    return output_img, crop_template 
開發者ID:aramis-lab,項目名稱:AD-DL,代碼行數:31,代碼來源:T1_linear_utils.py

示例9: transform

# 需要導入模塊: from nilearn import image [as 別名]
# 或者: from nilearn.image import resample_to_img [as 別名]
def transform(self, dataset, masker=None, return_type='image'):
        """
        Generate peaks2maps modeled activation images for each Contrast in dataset.

        Parameters
        ----------
        dataset : :obj:`nimare.dataset.Dataset`
            Dataset for which to make images.
        masker : img_like, optional
            Only used if dataset is a DataFrame.
        return_type : {'image', 'array'}, optional
            Whether to return a niimg ('image') or a numpy array.
            Default is 'image'.

        Returns
        -------
        imgs : :obj:`list` of :class:`nibabel.Nifti1Image` or :class:`numpy.ndarray`
            If return_type is 'image', a list of modeled activation images
            (one for each of the Contrasts in the input dataset).
            If return_type is 'array', a 2D numpy array (C x V), where C is
            contrast and V is voxel.
        """
        if isinstance(dataset, pd.DataFrame):
            assert masker is not None, 'Argument "masker" must be provided if dataset is a DataFrame'
            mask = masker.mask_img
            coordinates = dataset.copy()
        else:
            mask = dataset.masker.mask_img
            coordinates = dataset.coordinates

        coordinates_list = []
        for id_, data in coordinates.groupby('id'):
            mm_coords = []
            for coord in np.vstack((data.i.values, data.j.values, data.k.values)).T:
                mm_coords.append(vox2mm(coord, dataset.masker.mask_img.affine))
            coordinates_list.append(mm_coords)

        imgs = peaks2maps(coordinates_list, skip_out_of_bounds=True)

        if self.resample_to_mask:
            mask = dataset.masker.mask_img
            resampled_imgs = []
            for img in imgs:
                resampled_imgs.append(resample_to_img(img, mask))
            imgs = resampled_imgs
        else:
            # Resample mask to data instead of data to mask
            mask = resample_to_img(dataset.masker.mask_img,
                                   imgs[0], interpolation='nearest')

        if return_type == 'array':
            imgs = masker.transform(imgs)
        else:
            masked_images = []
            for img in imgs:
                masked_images.append(math_img('map*mask', map=img, mask=mask))
            imgs = masked_images
        return imgs 
開發者ID:neurostuff,項目名稱:NiMARE,代碼行數:60,代碼來源:kernel.py


注:本文中的nilearn.image.resample_to_img方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。