當前位置: 首頁>>代碼示例>>Python>>正文


Python image.new_img_like方法代碼示例

本文整理匯總了Python中nilearn.image.new_img_like方法的典型用法代碼示例。如果您正苦於以下問題:Python image.new_img_like方法的具體用法?Python image.new_img_like怎麽用?Python image.new_img_like使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在nilearn.image的用法示例。


在下文中一共展示了image.new_img_like方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: inject_skullstripped

# 需要導入模塊: from nilearn import image [as 別名]
# 或者: from nilearn.image import new_img_like [as 別名]
def inject_skullstripped(subjects_dir, subject_id, skullstripped):
    mridir = op.join(subjects_dir, subject_id, "mri")
    t1 = op.join(mridir, "T1.mgz")
    bm_auto = op.join(mridir, "brainmask.auto.mgz")
    bm = op.join(mridir, "brainmask.mgz")

    if not op.exists(bm_auto):
        img = nb.load(t1)
        mask = nb.load(skullstripped)
        bmask = new_img_like(mask, np.asanyarray(mask.dataobj) > 0)
        resampled_mask = resample_to_img(bmask, img, "nearest")
        masked_image = new_img_like(
            img, np.asanyarray(img.dataobj) * resampled_mask.dataobj
        )
        masked_image.to_filename(bm_auto)

    if not op.exists(bm):
        copyfile(bm_auto, bm, copy=True, use_hardlink=True)

    return subjects_dir, subject_id 
開發者ID:nipreps,項目名稱:niworkflows,代碼行數:22,代碼來源:freesurfer.py

示例2: new_nii_like

# 需要導入模塊: from nilearn import image [as 別名]
# 或者: from nilearn.image import new_img_like [as 別名]
def new_nii_like(ref_img, data, affine=None, copy_header=True):
    """
    Coerces `data` into NiftiImage format like `ref_img`

    Parameters
    ----------
    ref_img : :obj:`str` or img_like
        Reference image
    data : (S [x T]) array_like
        Data to be saved
    affine : (4 x 4) array_like, optional
        Transformation matrix to be used. Default: `ref_img.affine`
    copy_header : :obj:`bool`, optional
        Whether to copy header from `ref_img` to new image. Default: True

    Returns
    -------
    nii : :obj:`nibabel.nifti1.Nifti1Image`
        NiftiImage
    """

    ref_img = check_niimg(ref_img)
    newdata = data.reshape(ref_img.shape[:3] + data.shape[1:])
    if '.nii' not in ref_img.valid_exts:
        # this is rather ugly and may lose some information...
        nii = nib.Nifti1Image(newdata, affine=ref_img.affine,
                              header=ref_img.header)
    else:
        # nilearn's `new_img_like` is a very nice function
        nii = new_img_like(ref_img, newdata, affine=affine,
                           copy_header=copy_header)
    nii.set_data_dtype(data.dtype)

    return nii 
開發者ID:ME-ICA,項目名稱:tedana,代碼行數:36,代碼來源:io.py

示例3: scale_image

# 需要導入模塊: from nilearn import image [as 別名]
# 或者: from nilearn.image import new_img_like [as 別名]
def scale_image(image, scale_factor):
    scale_factor = np.asarray(scale_factor)
    new_affine = np.copy(image.affine)
    new_affine[:3, :3] = image.affine[:3, :3] * scale_factor
    new_affine[:, 3][:3] = image.affine[:, 3][:3] + (image.shape * np.diag(image.affine)[:3] * (1 - scale_factor)) / 2
    return new_img_like(image, data=image.get_data(), affine=new_affine) 
開發者ID:ellisdg,項目名稱:3DUnetCNN,代碼行數:8,代碼來源:augment.py

示例4: flip_image

# 需要導入模塊: from nilearn import image [as 別名]
# 或者: from nilearn.image import new_img_like [as 別名]
def flip_image(image, axis):
    try:
        new_data = np.copy(image.get_data())
        for axis_index in axis:
            new_data = np.flip(new_data, axis=axis_index)
    except TypeError:
        new_data = np.flip(image.get_data(), axis=axis)
    return new_img_like(image, data=new_data) 
開發者ID:ellisdg,項目名稱:3DUnetCNN,代碼行數:10,代碼來源:augment.py

示例5: resize

# 需要導入模塊: from nilearn import image [as 別名]
# 或者: from nilearn.image import new_img_like [as 別名]
def resize(image, new_shape, interpolation="linear"):
    image = reorder_img(image, resample=interpolation)
    zoom_level = np.divide(new_shape, image.shape)
    new_spacing = np.divide(image.header.get_zooms(), zoom_level)
    new_data = resample_to_spacing(image.get_data(), image.header.get_zooms(), new_spacing,
                                   interpolation=interpolation)
    new_affine = np.copy(image.affine)
    np.fill_diagonal(new_affine, new_spacing.tolist() + [1])
    new_affine[:3, 3] += calculate_origin_offset(new_spacing, image.header.get_zooms())
    return new_img_like(image, new_data, affine=new_affine) 
開發者ID:ellisdg,項目名稱:3DUnetCNN,代碼行數:12,代碼來源:utils.py

示例6: get_complete_foreground

# 需要導入模塊: from nilearn import image [as 別名]
# 或者: from nilearn.image import new_img_like [as 別名]
def get_complete_foreground(training_data_files):
    for i, set_of_files in enumerate(training_data_files):
        subject_foreground = get_foreground_from_set_of_files(set_of_files)
        if i == 0:
            foreground = subject_foreground
        else:
            foreground[subject_foreground > 0] = 1

    return new_img_like(read_image(training_data_files[0][-1]), foreground) 
開發者ID:ellisdg,項目名稱:3DUnetCNN,代碼行數:11,代碼來源:normalize.py

示例7: get_foreground_from_set_of_files

# 需要導入模塊: from nilearn import image [as 別名]
# 或者: from nilearn.image import new_img_like [as 別名]
def get_foreground_from_set_of_files(set_of_files, background_value=0, tolerance=0.00001, return_image=False):
    for i, image_file in enumerate(set_of_files):
        image = read_image(image_file)
        is_foreground = np.logical_or(image.get_data() < (background_value - tolerance),
                                      image.get_data() > (background_value + tolerance))
        if i == 0:
            foreground = np.zeros(is_foreground.shape, dtype=np.uint8)

        foreground[is_foreground] = 1
    if return_image:
        return new_img_like(image, foreground)
    else:
        return foreground 
開發者ID:ellisdg,項目名稱:3DUnetCNN,代碼行數:15,代碼來源:normalize.py

示例8: plot_registration

# 需要導入模塊: from nilearn import image [as 別名]
# 或者: from nilearn.image import new_img_like [as 別名]
def plot_registration(
    anat_nii,
    div_id,
    plot_params=None,
    order=("z", "x", "y"),
    cuts=None,
    estimate_brightness=False,
    label=None,
    contour=None,
    compress="auto",
):
    """
    Plots the foreground and background views
    Default order is: axial, coronal, sagittal
    """
    plot_params = {} if plot_params is None else plot_params

    # Use default MNI cuts if none defined
    if cuts is None:
        raise NotImplementedError  # TODO

    out_files = []
    if estimate_brightness:
        plot_params = robust_set_limits(anat_nii.get_fdata().reshape(-1), plot_params)

    # FreeSurfer ribbon.mgz
    ribbon = contour is not None and np.array_equal(
        np.unique(contour.get_fdata()), [0, 2, 3, 41, 42]
    )

    if ribbon:
        contour_data = contour.get_fdata() % 39
        white = nlimage.new_img_like(contour, contour_data == 2)
        pial = nlimage.new_img_like(contour, contour_data >= 2)

    # Plot each cut axis
    for i, mode in enumerate(list(order)):
        plot_params["display_mode"] = mode
        plot_params["cut_coords"] = cuts[mode]
        if i == 0:
            plot_params["title"] = label
        else:
            plot_params["title"] = None

        # Generate nilearn figure
        display = plot_anat(anat_nii, **plot_params)
        if ribbon:
            kwargs = {"levels": [0.5], "linewidths": 0.5}
            display.add_contours(white, colors="b", **kwargs)
            display.add_contours(pial, colors="r", **kwargs)
        elif contour is not None:
            display.add_contours(contour, colors="b", levels=[0.5], linewidths=0.5)

        svg = extract_svg(display, compress=compress)
        display.close()

        # Find and replace the figure_1 id.
        svg = svg.replace("figure_1", "%s-%s-%s" % (div_id, mode, uuid4()), 1)
        out_files.append(fromstring(svg))

    return out_files 
開發者ID:nipreps,項目名稱:niworkflows,代碼行數:63,代碼來源:utils.py


注:本文中的nilearn.image.new_img_like方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。