本文整理匯總了Python中nibabel.save方法的典型用法代碼示例。如果您正苦於以下問題:Python nibabel.save方法的具體用法?Python nibabel.save怎麽用?Python nibabel.save使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類nibabel
的用法示例。
在下文中一共展示了nibabel.save方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: extractMeanDataStats
# 需要導入模塊: import nibabel [as 別名]
# 或者: from nibabel import save [as 別名]
def extractMeanDataStats(size = [200, 200, 100],
postfix = '_200x200x100orig',
main_folder_path = '../../Data/MS2017b/',
):
scan_folders = glob.glob(main_folder_path + 'scans/*')
img_path = 'pre/FLAIR' + postfix + '.nii.gz'
segm_path = 'wmh' + postfix + '.nii.gz'
shape_ = [len(scan_folders), size[0], size[1], size[2]]
arr = np.zeros(shape_)
for i, sf in enumerate(scan_folders):
arr[i, :,:,:] = numpyFromScan(os.path.join(sf,img_path)).squeeze()
arr /= len(scan_folders)
means = np.mean(arr)
stds = np.std(arr, axis = 0)
np.save(main_folder_path + 'extra_data/std' + postfix, stds)
np.save(main_folder_path + 'extra_data/mean' + postfix, means)
示例2: generateImgSlicesFolder
# 需要導入模塊: import nibabel [as 別名]
# 或者: from nibabel import save [as 別名]
def generateImgSlicesFolder(data_folder = '../Data/MS2017a/scans/'):
scan_folders = glob.glob(data_folder + '*')
for sf in scan_folders:
slice_dir_path = os.path.join(sf, 'slices/')
if not os.path.exists(slice_dir_path):
print('Creating directory at:' , slice_dir_path)
os.makedirs(slice_dir_path)
img = nib.load(os.path.join(sf, 'pre/FLAIR.nii.gz'))
img_np = img.get_data()
img_affine = img.affine
print(sf)
print('The img shape', img_np.shape[2])
for i in range(img_np.shape[2]):
slice_img_np = img_np[:,:,i]
nft_img = nib.Nifti1Image(slice_img_np, img_affine)
nib.save(nft_img, slice_dir_path + 'FLAIR_' + str(i) + '.nii.gz')
if os.path.basename(sf) == '0':
slice_img = nib.load(slice_dir_path + 'FLAIR_' + str(i) + '.nii.gz').get_data() / 5
print('DID I GET HERE?')
print('Writing to', str(i) + '.jpg')
示例3: generateGTSlicesFolder
# 需要導入模塊: import nibabel [as 別名]
# 或者: from nibabel import save [as 別名]
def generateGTSlicesFolder(data_folder = '../Data/MS2017a/scans/'):
scan_folders = glob.glob(data_folder + '*')
for sf in scan_folders:
slice_dir_path = os.path.join(sf, 'gt_slices/')
if not os.path.exists(slice_dir_path):
print('Creating directory at:' , slice_dir_path)
os.makedirs(slice_dir_path)
img = nib.load(os.path.join(sf, 'wmh.nii.gz'))
img_np = img.get_data()
img_affine = img.affine
print(sf)
print('The img shape', img_np.shape[2])
for i in range(img_np.shape[2]):
slice_img_np = img_np[:,:,i]
nft_img = nib.Nifti1Image(slice_img_np, img_affine)
nib.save(nft_img, slice_dir_path + 'wmh_' + str(i) + '.nii.gz')
if os.path.basename(sf) == '0':
slice_img = nib.load(slice_dir_path + 'wmh_' + str(i) + '.nii.gz').get_data() * 256
#cv2.imwrite('temp/' + str(i) + '.jpg', slice_img)
示例4: generateTrainValFile_Slices
# 需要導入模塊: import nibabel [as 別名]
# 或者: from nibabel import save [as 別名]
def generateTrainValFile_Slices(train_fraction, main_folder = '../Data/MS2017a/'):
train_folders, val_folders = splitTrainVal_Slices(0.8)
train_folder_names = [train_folders[i].split(main_folder)[1] for i in range(len(train_folders))]
val_folder_names = [val_folders[i].split(main_folder)[1] for i in range(len(val_folders))]
f_train = open(main_folder + 'train_slices.txt', 'w+')
f_val = open(main_folder + 'val_slices.txt', 'w+')
for fn in train_folder_names:
f_train.write(fn + '\n')
for fn in val_folder_names:
f_val.write(fn + '\n')
f_train.close()
f_val.close()
#Use this to save the images quickly (for testing purposes)
示例5: test_to_nonlinear_grid_crop
# 需要導入模塊: import nibabel [as 別名]
# 或者: from nibabel import save [as 別名]
def test_to_nonlinear_grid_crop(self, sphere3_msh):
import nibabel
data = sphere3_msh.elm.tag1
f = mesh_io.ElementData(data, mesh=sphere3_msh)
affine = np.array([[1, 0, 0, -100.5],
[0, 1, 0, -5],
[0, 0, 1, 0],
[0, 0, 0, 1]], dtype=float)
x, y, z = np.meshgrid(np.arange(-100, 100),
np.arange(-5, 5),
np.arange(0, 1),
indexing='ij')
nonl_transform = np.concatenate(
(x[..., None], y[..., None], z[..., None]), axis=3).astype(float)
img = nibabel.Nifti1Pair(nonl_transform, affine)
tempf = tempfile.NamedTemporaryFile(suffix='.nii', delete=False)
fn = tempf.name
tempf.close()
nibabel.save(img, fn)
interp = f.to_deformed_grid(fn, fn, tags=3, method='assign')
interp = interp.get_data()
assert np.isclose(interp[100, 5, 0], 3)
assert np.isclose(interp[187, 5, 0], 0)
assert np.isclose(interp[193, 5, 0], 0)
assert np.isclose(interp[198, 5, 0], 0)
示例6: auto_crop_image
# 需要導入模塊: import nibabel [as 別名]
# 或者: from nibabel import save [as 別名]
def auto_crop_image(input_name, output_name, reserve):
nim = nib.load(input_name)
image = nim.get_data()
X, Y, Z = image.shape[:3]
# Detect the bounding box of the foreground
idx = np.nonzero(image > 0)
x1, x2 = idx[0].min() - reserve, idx[0].max() + reserve + 1
y1, y2 = idx[1].min() - reserve, idx[1].max() + reserve + 1
z1, z2 = idx[2].min() - reserve, idx[2].max() + reserve + 1
x1, x2 = max(x1, 0), min(x2, X)
y1, y2 = max(y1, 0), min(y2, Y)
z1, z2 = max(z1, 0), min(z2, Z)
print('Bounding box')
print(' bottom-left corner = ({},{},{})'.format(x1, y1, z1))
print(' top-right corner = ({},{},{})'.format(x2, y2, z2))
# Crop the image
image = image[x1:x2, y1:y2, z1:z2]
# Update the affine matrix
affine = nim.affine
affine[:3, 3] = np.dot(affine, np.array([x1, y1, z1, 1]))[:3]
nim2 = nib.Nifti1Image(image, affine)
nib.save(nim2, output_name)
示例7: save_slice_volume
# 需要導入模塊: import nibabel [as 別名]
# 或者: from nibabel import save [as 別名]
def save_slice_volume(volume, save_path):
'''
the function save volume data to slices in the specific directory
:param volume: input volume data
:param save_path:
:return:
'''
shape = volume.shape
# translate intensity to 0-255
v_max = np.max(volume)
v_min = np.min(volume)
volume_norm = (volume - v_min) / (v_max - v_min)
volume_norm = (volume_norm * 255).astype("int")
if not os.path.exists(save_path):
os.makedirs(save_path)
for i in range(shape[-1]):
abs_path = os.path.join(save_path, str(i)+".png")
cv.imwrite(abs_path, volume_norm[..., i])
# calculate the cube information
示例8: _write_raw_fif
# 需要導入模塊: import nibabel [as 別名]
# 或者: from nibabel import save [as 別名]
def _write_raw_fif(raw, bids_fname):
"""Save out the raw file in FIF.
Parameters
----------
raw : mne.io.Raw
Raw file to save out.
bids_fname : str | BIDSPath
The name of the BIDS-specified file where the raw object
should be saved.
"""
n_rawfiles = len(raw.filenames)
if n_rawfiles > 1:
split_naming = 'bids'
raw.save(bids_fname, split_naming=split_naming, overwrite=True)
else:
# This ensures that single FIF files do not have the split param
raw.save(bids_fname, split_naming='neuromag', overwrite=True)
示例9: _write_gifti
# 需要導入模塊: import nibabel [as 別名]
# 或者: from nibabel import save [as 別名]
def _write_gifti(pd, opth):
# TODO: what about pointdata?
from nibabel.gifti.gifti import GiftiDataArray
if not pd.has_only_triangle:
raise ValueError('GIFTI writer only accepts triangles.')
points = GiftiDataArray(data=pd.Points, intent=INTENT_POINTS)
cells = GiftiDataArray(data=pd.GetCells2D(), intent=INTENT_CELLS)
# if data is not None:
# data_array = GiftiDataArray(data=data, intent=INTENT_POINTDATA)
# gii = nb.gifti.GiftiImage(darrays=[points, cells, data_array])
# else:
g = nb.gifti.GiftiImage(darrays=[points, cells])
nb.save(g, opth)
###############################################################################
# VTK Reader and Writer for GIFTI surfaces
###############################################################################
示例10: test_shape
# 需要導入模塊: import nibabel [as 別名]
# 或者: from nibabel import save [as 別名]
def test_shape(self, num_workers, dataset_size):
test_image = nib.Nifti1Image(np.random.randint(0, 2, size=[128, 128, 128]), np.eye(4))
tempdir = tempfile.mkdtemp()
nib.save(test_image, os.path.join(tempdir, "test_image1.nii.gz"))
nib.save(test_image, os.path.join(tempdir, "test_label1.nii.gz"))
nib.save(test_image, os.path.join(tempdir, "test_extra1.nii.gz"))
test_data = [
{
"image": os.path.join(tempdir, "test_image1.nii.gz"),
"label": os.path.join(tempdir, "test_label1.nii.gz"),
"extra": os.path.join(tempdir, "test_extra1.nii.gz"),
}
] * dataset_size
dataset = CacheDataset(
data=test_data,
transform=Compose([LoadNiftid(keys=["image", "label", "extra"])]),
cache_rate=1,
num_workers=num_workers,
)
shutil.rmtree(tempdir)
self.assertEqual(len(dataset._cache), dataset.cache_num)
for i in range(dataset.cache_num):
self.assertIsNotNone(dataset._cache[i])
示例11: test_default_none
# 需要導入模塊: import nibabel [as 別名]
# 或者: from nibabel import save [as 別名]
def test_default_none(self, img_transform, expected_shape):
test_image = nib.Nifti1Image(np.random.randint(0, 2, size=(128, 128, 128)), np.eye(4))
tempdir = tempfile.mkdtemp()
test_image1 = os.path.join(tempdir, "test_image1.nii.gz")
test_image2 = os.path.join(tempdir, "test_image2.nii.gz")
nib.save(test_image, test_image1)
nib.save(test_image, test_image2)
test_images = [test_image1, test_image2]
dataset = ArrayDataset(test_images, img_transform)
self.assertEqual(len(dataset), 2)
dataset.set_random_state(1234)
data1 = dataset[0]
data2 = dataset[1]
self.assertTupleEqual(data1.shape, expected_shape)
self.assertTupleEqual(data2.shape, expected_shape)
dataset = ArrayDataset(test_images, img_transform)
dataset.set_random_state(1234)
_ = dataset[0]
data2_new = dataset[1]
np.testing.assert_allclose(data2, data2_new, atol=1e-3)
shutil.rmtree(tempdir)
示例12: test_shape
# 需要導入模塊: import nibabel [as 別名]
# 或者: from nibabel import save [as 別名]
def test_shape(self, input_param, filenames, expected_shape):
test_image = np.random.randint(0, 2, size=[128, 128, 128])
tempdir = tempfile.mkdtemp()
for i, name in enumerate(filenames):
filenames[i] = os.path.join(tempdir, name)
nib.save(nib.Nifti1Image(test_image, np.eye(4)), filenames[i])
result = LoadNifti(**input_param)(filenames)
if isinstance(result, tuple):
result, header = result
self.assertTrue("affine" in header)
np.testing.assert_allclose(header["affine"], np.eye(4))
if input_param["as_closest_canonical"]:
np.testing.asesrt_allclose(header["original_affine"], np.eye(4))
self.assertTupleEqual(result.shape, expected_shape)
shutil.rmtree(tempdir)
示例13: save_landmarks_pts
# 需要導入模塊: import nibabel [as 別名]
# 或者: from nibabel import save [as 別名]
def save_landmarks_pts(path_file, landmarks):
""" save landmarks into a txt file
we are using VTK pointdata legacy format, ITK compatible::
<index, point>
<number of points>
point1-x point1-y [point1-z]
point2-x point2-y [point2-z]
.. seealso:: https://simpleelastix.readthedocs.io/PointBasedRegistration.html
:param str path_file: path to the output file
:param landmarks: np.array<np_points, dim>
:return str: file path
"""
assert os.path.isdir(os.path.dirname(path_file)), \
'missing folder "%s"' % os.path.dirname(path_file)
path_file = os.path.splitext(path_file)[0] + '.pts'
lines = ['point', str(len(landmarks))]
lines += [' '.join(str(i) for i in point) for point in landmarks]
with open(path_file, 'w') as fp:
fp.write('\n'.join(lines))
return path_file
示例14: save_landmarks_csv
# 需要導入模塊: import nibabel [as 別名]
# 或者: from nibabel import save [as 別名]
def save_landmarks_csv(path_file, landmarks):
""" save landmarks into a csv file
we are using simple format::
,X,Y
0,point1-x,point1-y
1,point2-x,point2-y
:param str path_file: path to the output file
:param landmarks: np.array<np_points, dim>
:return str: file path
"""
assert os.path.isdir(os.path.dirname(path_file)), \
'missing folder "%s"' % os.path.dirname(path_file)
path_file = os.path.splitext(path_file)[0] + '.csv'
df = pd.DataFrame(landmarks, columns=LANDMARK_COORDS)
df.index = np.arange(1, len(df) + 1)
df.to_csv(path_file)
return path_file
示例15: save_image
# 需要導入模塊: import nibabel [as 別名]
# 或者: from nibabel import save [as 別名]
def save_image(path_image, image):
""" save the image into given path
:param str path_image: path to the image
:param image: np.array<height, width, ch>
>>> # Wrong path
>>> save_image('./missing-path/any-image.png', np.zeros((10, 20)))
False
"""
path_dir = os.path.dirname(path_image)
if not os.path.isdir(path_dir):
logging.error('upper folder does not exists: "%s"', path_dir)
return False
image = convert_ndarray2image(image)
image.save(path_image)