當前位置: 首頁>>代碼示例>>Python>>正文


Python nibabel.MGHImage方法代碼示例

本文整理匯總了Python中nibabel.MGHImage方法的典型用法代碼示例。如果您正苦於以下問題:Python nibabel.MGHImage方法的具體用法?Python nibabel.MGHImage怎麽用?Python nibabel.MGHImage使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在nibabel的用法示例。


在下文中一共展示了nibabel.MGHImage方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _mri_landmarks_to_mri_voxels

# 需要導入模塊: import nibabel [as 別名]
# 或者: from nibabel import MGHImage [as 別名]
def _mri_landmarks_to_mri_voxels(mri_landmarks, t1_mgh):
    """Convert landmarks from MRI RAS space to MRI voxel space.

    Parameters
    ----------
    mri_landmarks : array, shape (3, 3)
        The MRI RAS landmark data: rows LPA, NAS, RPA, columns x, y, z.
    t1_mgh : nib.MGHImage
        The image data in MGH format.

    Returns
    -------
    mri_landmarks : array, shape (3, 3)
        The MRI voxel-space landmark data.
    """
    # Get landmarks in voxel space, using the T1 data
    vox2ras_tkr = t1_mgh.header.get_vox2ras_tkr()
    ras2vox_tkr = linalg.inv(vox2ras_tkr)
    mri_landmarks = apply_trans(ras2vox_tkr, mri_landmarks)  # in vox
    return mri_landmarks 
開發者ID:mne-tools,項目名稱:mne-bids,代碼行數:22,代碼來源:write.py

示例2: map_image

# 需要導入模塊: import nibabel [as 別名]
# 或者: from nibabel import MGHImage [as 別名]
def map_image(img, out_affine, out_shape, ras2ras=np.array([[1.0, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]),
              order=1):
    """
    Function to map image to new voxel space (RAS orientation)

    :param nibabel.MGHImage img: the src 3D image with data and affine set
    :param np.ndarray out_affine: trg image affine
    :param np.ndarray out_shape: the trg shape information
    :param np.ndarray ras2ras: ras2ras an additional maping that should be applied (default=id to just reslice)
    :param int order: order of interpolation (0=nearest,1=linear(default),2=quadratic,3=cubic)
    :return: mapped Image data array
    """
    from scipy.ndimage import affine_transform
    from numpy.linalg import inv

    # compute vox2vox from src to trg
    vox2vox = inv(out_affine) @ ras2ras @ img.affine

    # here we apply the inverse vox2vox (to pull back the src info to the target image)
    new_data = affine_transform(img.get_data(), inv(vox2vox), output_shape=out_shape, order=order)
    return new_data 
開發者ID:Deep-MI,項目名稱:FastSurfer,代碼行數:23,代碼來源:conform.py

示例3: test_inject_skullstrip

# 需要導入模塊: import nibabel [as 別名]
# 或者: from nibabel import MGHImage [as 別名]
def test_inject_skullstrip(tmp_path):
    t1_mgz = tmp_path / "sub-01" / "mri" / "T1.mgz"
    t1_mgz.parent.mkdir(parents=True)
    # T1.mgz images are uint8
    nb.MGHImage(np.ones((5, 5, 5), dtype=np.uint8), np.eye(4)).to_filename(str(t1_mgz))

    mask_nii = tmp_path / "mask.nii.gz"
    # Masks may be in a different space (and need resampling), but should be boolean,
    # or uint8 in NIfTI
    nb.Nifti1Image(np.ones((6, 6, 6), dtype=np.uint8), np.eye(4)).to_filename(
        str(mask_nii)
    )

    FSInjectBrainExtracted(
        subjects_dir=str(tmp_path), subject_id="sub-01", in_brain=str(mask_nii)
    ).run()

    assert Path.exists(tmp_path / "sub-01" / "mri" / "brainmask.auto.mgz")
    assert Path.exists(tmp_path / "sub-01" / "mri" / "brainmask.mgz")

    # Run a second time to hit "already exists" condition
    FSInjectBrainExtracted(
        subjects_dir=str(tmp_path), subject_id="sub-01", in_brain=str(mask_nii)
    ).run() 
開發者ID:nipreps,項目名稱:niworkflows,代碼行數:26,代碼來源:test_freesurfer.py

示例4: is_conform

# 需要導入模塊: import nibabel [as 別名]
# 或者: from nibabel import MGHImage [as 別名]
def is_conform(img, eps=1e-06):
    """
    Function to check if an image is already conformed or not (Dimensions: 256x256x256, Voxel size: 1x1x1, and
    LIA orientation.

    :param nibabel.MGHImage img: Loaded source image
    :param float eps: allowed deviation from zero for LIA orientation check (default 1e-06).
                      Small inaccuracies can occur through the inversion operation. Already conformed images are
                      thus sometimes not correctly recognized. The epsilon accounts for these small shifts.
    :return: True if image is already conformed, False otherwise
    """
    ishape = img.shape

    if len(ishape) > 3 and ishape[3] != 1:
        sys.exit('ERROR: Multiple input frames (' + format(img.shape[3]) + ') not supported!')

    # check dimensions
    if ishape[0] != 256 or ishape[1] != 256 or ishape[2] != 256:
        return False

    # check voxel size
    izoom = img.header.get_zooms()
    if izoom[0] != 1.0 or izoom[1] != 1.0 or izoom[2] != 1.0:
        return False

    # check orientation LIA
    iaffine = img.affine[0:3, 0:3] + [[1, 0, 0], [0, 0, -1], [0, 1, 0]]

    if np.max(np.abs(iaffine)) > 0.0 + eps:
        return False

    return True 
開發者ID:Deep-MI,項目名稱:FastSurfer,代碼行數:34,代碼來源:conform.py

示例5: conform

# 需要導入模塊: import nibabel [as 別名]
# 或者: from nibabel import MGHImage [as 別名]
def conform(img, order=1):
    """
    Python version of mri_convert -c, which turns image intensity values into UCHAR, reslices images to standard position, fills up
    slices to standard 256x256x256 format and enforces 1 mm isotropic voxel sizes.

    Difference to mri_convert -c is that we first interpolate (float image), and then rescale to uchar. mri_convert is
    doing it the other way. However, we compute the scale factor from the input to be more similar again

    :param nibabel.MGHImage img: loaded source image
    :param int order: interpolation order (0=nearest,1=linear(default),2=quadratic,3=cubic)
    :return:nibabel.MGHImage new_img: conformed image
    """
    from nibabel.freesurfer.mghformat import MGHHeader

    cwidth = 256
    csize = 1
    h1 = MGHHeader.from_header(img.header)  # may copy some parameters if input was MGH format

    h1.set_data_shape([cwidth, cwidth, cwidth, 1])
    h1.set_zooms([csize, csize, csize])
    h1['Mdc'] = [[-1, 0, 0], [0, 0, -1], [0, 1, 0]]
    h1['fov'] = cwidth
    h1['Pxyz_c'] = img.affine.dot(np.hstack((np.array(img.shape[:3]) / 2.0, [1])))[:3]

    # from_header does not compute Pxyz_c (and probably others) when importing from nii
    # Pxyz is the center of the image in world coords

    # get scale for conversion on original input before mapping to be more similar to mri_convert
    src_min, scale = getscale(img.get_data(), 0, 255)

    mapped_data = map_image(img, h1.get_affine(), h1.get_data_shape(), order=order)
    # print("max: "+format(np.max(mapped_data)))

    if not img.get_data_dtype() == np.dtype(np.uint8):

        if np.max(mapped_data) > 255:
            mapped_data = scalecrop(mapped_data, 0, 255, src_min, scale)

    new_data = np.uint8(np.rint(mapped_data))
    new_img = nib.MGHImage(new_data, h1.get_affine(), h1)

    # make sure we store uchar
    new_img.set_data_dtype(np.uint8)

    return new_img 
開發者ID:Deep-MI,項目名稱:FastSurfer,代碼行數:47,代碼來源:conform.py


注:本文中的nibabel.MGHImage方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。