當前位置: 首頁>>代碼示例>>Python>>正文


Python neural_renderer.get_points_from_angles方法代碼示例

本文整理匯總了Python中neural_renderer.get_points_from_angles方法的典型用法代碼示例。如果您正苦於以下問題:Python neural_renderer.get_points_from_angles方法的具體用法?Python neural_renderer.get_points_from_angles怎麽用?Python neural_renderer.get_points_from_angles使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在neural_renderer的用法示例。


在下文中一共展示了neural_renderer.get_points_from_angles方法的13個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_texture

# 需要導入模塊: import neural_renderer [as 別名]
# 或者: from neural_renderer import get_points_from_angles [as 別名]
def test_texture(self):
        pass
        # renderer = neural_renderer.Renderer()
        # renderer.eye = neural_renderer.get_points_from_angles(2, 15, 30)
        # renderer.eye = neural_renderer.get_points_from_angles(2, 15, -90)
        #
        # vertices, faces, textures = neural_renderer.load_obj(
        #     './tests/data/4e49873292196f02574b5684eaec43e9/model.obj', load_texture=True, texture_size=16, normalization=False)
        #
        # # vertices, faces, textures = neural_renderer.load_obj('./tests/data/1cde62b063e14777c9152a706245d48/model.obj')
        # neural_renderer.save_obj('./tests/data/tmp.obj', vertices, faces, textures)
        #
        # vertices, faces, textures = neural_renderer.load_obj('./tests/data/tmp.obj', load_texture=True, texture_size=16)
        # vertices = chainer.cuda.to_gpu(vertices)
        # faces = chainer.cuda.to_gpu(faces)
        # textures = chainer.cuda.to_gpu(textures)
        # images = renderer.render(vertices[None, :, :], faces[None, :, :], textures[None, :, :, :, :, :]).data.get()
        # scipy.misc.imsave('./tests/data/car2.png', scipy.misc.toimage(images[0])) 
開發者ID:hiroharu-kato,項目名稱:neural_renderer,代碼行數:20,代碼來源:test_save_obj.py

示例2: test_texture

# 需要導入模塊: import neural_renderer [as 別名]
# 或者: from neural_renderer import get_points_from_angles [as 別名]
def test_texture(self):
        renderer = neural_renderer.Renderer()

        vertices, faces, textures = neural_renderer.load_obj(
            './tests/data/1cde62b063e14777c9152a706245d48/model.obj', load_texture=True)

        vertices = chainer.cuda.to_gpu(vertices)
        faces = chainer.cuda.to_gpu(faces)
        textures = chainer.cuda.to_gpu(textures)
        renderer.eye = neural_renderer.get_points_from_angles(2, 15, 30)
        images = renderer.render(vertices[None, :, :], faces[None, :, :], textures[None, :, :, :, :, :]).data.get()
        scipy.misc.imsave('./tests/data/car.png', scipy.misc.toimage(images[0]))

        vertices, faces, textures = neural_renderer.load_obj(
            './tests/data/4e49873292196f02574b5684eaec43e9/model.obj', load_texture=True, texture_size=16)
        vertices = chainer.cuda.to_gpu(vertices)
        faces = chainer.cuda.to_gpu(faces)
        textures = chainer.cuda.to_gpu(textures)
        renderer.eye = neural_renderer.get_points_from_angles(2, 15, -90)
        images = renderer.render(vertices[None, :, :], faces[None, :, :], textures[None, :, :, :, :, :]).data.get()
        scipy.misc.imsave('./tests/data/display.png', scipy.misc.toimage(images[0])) 
開發者ID:hiroharu-kato,項目名稱:neural_renderer,代碼行數:23,代碼來源:test_load_obj.py

示例3: make_reference_image

# 需要導入模塊: import neural_renderer [as 別名]
# 或者: from neural_renderer import get_points_from_angles [as 別名]
def make_reference_image(filename_ref, filename_obj):
    model = Model(filename_obj)
    model.to_gpu()

    model.renderer.eye = neural_renderer.get_points_from_angles(2.732, 30, -15)
    images = model.renderer.render(model.vertices, model.faces, cf.tanh(model.textures))
    image = images.data.get()[0]
    scipy.misc.toimage(image, cmin=0, cmax=1).save(filename_ref) 
開發者ID:hiroharu-kato,項目名稱:neural_renderer,代碼行數:10,代碼來源:example4.py

示例4: __call__

# 需要導入模塊: import neural_renderer [as 別名]
# 或者: from neural_renderer import get_points_from_angles [as 別名]
def __call__(self):
        self.renderer.eye = neural_renderer.get_points_from_angles(2.732, 0, np.random.uniform(0, 360))
        image = self.renderer.render(self.vertices, self.faces, cf.tanh(self.textures))
        loss = cf.sum(cf.square(image - self.image_ref.transpose((2, 0, 1))[None, :, :, :]))
        return loss 
開發者ID:hiroharu-kato,項目名稱:neural_renderer,代碼行數:7,代碼來源:example3.py

示例5: run

# 需要導入模塊: import neural_renderer [as 別名]
# 或者: from neural_renderer import get_points_from_angles [as 別名]
def run():
    parser = argparse.ArgumentParser()
    parser.add_argument('-io', '--filename_obj', type=str, default='./examples/data/teapot.obj')
    parser.add_argument('-ir', '--filename_ref', type=str, default='./examples/data/example3_ref.png')
    parser.add_argument('-or', '--filename_output', type=str, default='./examples/data/example3_result.gif')
    parser.add_argument('-g', '--gpu', type=int, default=0)
    args = parser.parse_args()
    working_directory = os.path.dirname(args.filename_output)

    model = Model(args.filename_obj, args.filename_ref)
    model.to_gpu()

    optimizer = chainer.optimizers.Adam(alpha=0.1, beta1=0.5)
    optimizer.setup(model)
    loop = tqdm.tqdm(range(300))
    for _ in loop:
        loop.set_description('Optimizing')
        optimizer.target.cleargrads()
        loss = model()
        loss.backward()
        optimizer.update()

    # draw object
    loop = tqdm.tqdm(range(0, 360, 4))
    for num, azimuth in enumerate(loop):
        loop.set_description('Drawing')
        model.renderer.eye = neural_renderer.get_points_from_angles(2.732, 0, azimuth)
        images = model.renderer.render(model.vertices, model.faces, cf.tanh(model.textures))
        image = images.data.get()[0].transpose((1, 2, 0))
        scipy.misc.toimage(image, cmin=0, cmax=1).save('%s/_tmp_%04d.png' % (working_directory, num))
    make_gif(working_directory, args.filename_output) 
開發者ID:hiroharu-kato,項目名稱:neural_renderer,代碼行數:33,代碼來源:example3.py

示例6: __call__

# 需要導入模塊: import neural_renderer [as 別名]
# 或者: from neural_renderer import get_points_from_angles [as 別名]
def __call__(self):
        self.renderer.eye = neural_renderer.get_points_from_angles(2.732, 0, 90)
        image = self.renderer.render_silhouettes(self.vertices, self.faces)
        loss = cf.sum(cf.square(image - self.image_ref[None, :, :]))
        return loss 
開發者ID:hiroharu-kato,項目名稱:neural_renderer,代碼行數:7,代碼來源:example2.py

示例7: get_random_batch

# 需要導入模塊: import neural_renderer [as 別名]
# 或者: from neural_renderer import get_points_from_angles [as 別名]
def get_random_batch(self, batch_size):
        data_ids_a = np.zeros(batch_size, 'int32')
        data_ids_b = np.zeros(batch_size, 'int32')
        viewpoint_ids_a = np.zeros(batch_size, 'int32')
        viewpoint_ids_b = np.zeros(batch_size, 'int32')
        for i in range(batch_size):
            class_id = np.random.choice(self.class_ids)
            object_id = np.random.randint(0, self.num_data[class_id])
            viewpoint_id_a = np.random.randint(0, 24)
            viewpoint_id_b = np.random.randint(0, 24)
            data_id_a = (object_id + self.pos[class_id]) * 24 + viewpoint_id_a
            data_id_b = (object_id + self.pos[class_id]) * 24 + viewpoint_id_b
            data_ids_a[i] = data_id_a
            data_ids_b[i] = data_id_b
            viewpoint_ids_a[i] = viewpoint_id_a
            viewpoint_ids_b[i] = viewpoint_id_b

        images_a = self.images[data_ids_a].astype('float32') / 255.
        images_b = self.images[data_ids_b].astype('float32') / 255.

        distances = np.ones(batch_size, 'float32') * self.distance
        elevations = np.ones(batch_size, 'float32') * self.elevation
        viewpoints_a = neural_renderer.get_points_from_angles(distances, elevations, -viewpoint_ids_a * 15)
        viewpoints_b = neural_renderer.get_points_from_angles(distances, elevations, -viewpoint_ids_b * 15)

        return images_a, images_b, viewpoints_a, viewpoints_b 
開發者ID:hiroharu-kato,項目名稱:mesh_reconstruction,代碼行數:28,代碼來源:datasets.py

示例8: __init__

# 需要導入模塊: import neural_renderer [as 別名]
# 或者: from neural_renderer import get_points_from_angles [as 別名]
def __init__(self, faces,np_v_template = None,test=False,test_camera=False,high_resolution=False):
        super(Renderer_seg, self).__init__()
        image_size=500 if high_resolution else 256

        self.camera_distance = 1/math.tan(math.pi/18)#3.464#1.732
        self.elevation = 0
        self.azimuth = 0
        self.register_buffer('faces', faces)
        self.renderer = nr.Renderer(image_size = image_size,camera_mode='look_at',\
            light_intensity_ambient=0.72, light_intensity_directional=0.3,\
            light_color_ambient=[1,1,1], light_color_directional=[1,1,1],\
            light_direction=[0,1,0]).cuda()

        texture_size = 4
        textures = torch.ones(64, self.faces.shape[1], texture_size, texture_size, texture_size, 3, dtype=torch.float32)
        textures[:,:,:,:,:] = torch.from_numpy(np.array([0.7098039, 0.84117647, 0.95882353])).float()#'light_blue'193,210,240;0.65098039, 0.74117647, 0.85882353;;'light_pink': [.9, .7, .7]
        self.register_buffer('textures', textures.cuda())
        self.renderer.viewing_angle = 10
        self.renderer.eye = nr.get_points_from_angles(self.camera_distance,self.elevation,self.azimuth)
        #self.renderer.camera_direction = [0,0,1]

        #testing
        if test:
            v_template = torch.from_numpy(np_v_template).float().cuda()
            #v_template = np_v_template.float().cuda()
            projected_seg = self.forward(v_template)
            projected_seg = (projected_seg.cpu().numpy()[0]*255).astype(np.uint8)
            cv2.imwrite('./cut_{}_{}_{}.png'.format(self.azimuth,self.elevation,self.camera_distance),projected_seg)
        if test_camera:
            v_template = torch.from_numpy(np_v_template).float().cuda()
            for self.camera_distance in range(1,3):
                for self.elevation in range(0,90,30):
                    for self.azimuth in range(0,360,30):
                        self.renderer.eye = nr.get_points_from_angles(self.camera_distance,self.elevation,self.azimuth)
                        projected_seg = self.forward(v_template)
                        projected_seg = projected_seg.cpu().numpy()[0].astype(np.bool).astype(np.int)*255
                        cv2.imwrite('./cut_{}_{}_{}.png'.format(self.azimuth,self.elevation,self.camera_distance),projected_seg) 
開發者ID:JDAI-CV,項目名稱:DSD-SATN,代碼行數:39,代碼來源:neuralrenderer_render.py

示例9: __call__

# 需要導入模塊: import neural_renderer [as 別名]
# 或者: from neural_renderer import get_points_from_angles [as 別名]
def __call__(self, batch_size):
        xp = self.xp

        # set random background color
        # background_color = xp.random.uniform(0., 1., size=(batch_size, 3)).astype('float32')
        # background_color = xp.random.uniform(0., 1., size=(batch_size,)).astype('float32')
        # background_color = xp.tile(background_color[:, None], (1, 3))
        background_color = xp.ones((batch_size, 3), 'float32') * xp.random.uniform(0., 1.)
        self.renderer.background_color = background_color

        # set random viewpoints
        self.renderer.eye = neural_renderer.get_points_from_angles(
            distance=(
                xp.ones(batch_size, 'float32') * self.camera_distance +
                xp.random.normal(size=batch_size).astype('float32') * self.camera_distance_noise),
            elevation=xp.random.uniform(self.elevation_min, self.elevation_max, batch_size).astype('float32'),
            azimuth=xp.random.uniform(0, 360, size=batch_size).astype('float32'))

        # compute loss
        images = self.renderer.render(*self.mesh.get_batch(batch_size))
        features = self.extract_feature(images)
        loss = -cf.sum(cf.square(features)) / features.size

        var_line_length = get_var_line_length_loss(self.mesh.vertices, self.mesh.faces)
        loss += self.lambda_length * var_line_length

        return loss 
開發者ID:hiroharu-kato,項目名稱:deep_dream_3d,代碼行數:29,代碼來源:main.py

示例10: __call__

# 需要導入模塊: import neural_renderer [as 別名]
# 或者: from neural_renderer import get_points_from_angles [as 別名]
def __call__(self, batch_size):
        xp = self.xp

        # set random viewpoints
        self.renderer.eye = neural_renderer.get_points_from_angles(
            distance=(
                    xp.ones(batch_size, 'float32') * self.camera_distance +
                    xp.random.normal(size=batch_size).astype('float32') * self.camera_distance_noise),
            elevation=xp.random.uniform(self.elevation_min, self.elevation_max, batch_size).astype('float32'),
            azimuth=xp.random.uniform(0, 360, size=batch_size).astype('float32'))

        # set random lighting direction
        angles = xp.random.uniform(0, 360, size=batch_size).astype('float32')
        y = xp.ones(batch_size, 'float32') * xp.cos(xp.radians(30).astype('float32'))
        x = xp.ones(batch_size, 'float32') * xp.sin(xp.radians(30).astype('float32')) * xp.sin(xp.radians(angles))
        z = xp.ones(batch_size, 'float32') * xp.sin(xp.radians(30).astype('float32')) * xp.cos(xp.radians(angles))
        directions = xp.concatenate((x[:, None], y[:, None], z[:, None]), axis=1)
        self.renderer.light_direction = directions

        # compute loss
        images = self.renderer.render(*self.mesh.get_batch(batch_size))
        masks = self.renderer.render_silhouettes(*self.mesh.get_batch(batch_size)[:2])
        # import IPython
        # IPython.embed()
        features = self.extract_style_feature(images, masks)

        loss_style = self.compute_style_loss(features)
        loss_content = self.compute_content_loss()
        loss_tv = self.compute_tv_loss(images, masks)
        loss = self.lambda_style * loss_style + self.lambda_content * loss_content + self.lambda_tv * loss_tv

        # set default lighting direction
        self.renderer.light_direction = [0, 1, 0]

        return loss 
開發者ID:hiroharu-kato,項目名稱:style_transfer_3d,代碼行數:37,代碼來源:main.py

示例11: run

# 需要導入模塊: import neural_renderer [as 別名]
# 或者: from neural_renderer import get_points_from_angles [as 別名]
def run():
    parser = argparse.ArgumentParser()
    parser.add_argument('-i', '--filename_input', type=str, default='./examples/data/teapot.obj')
    parser.add_argument('-o', '--filename_output', type=str, default='./examples/data/example1.gif')
    parser.add_argument('-g', '--gpu', type=int, default=0)
    args = parser.parse_args()
    working_directory = os.path.dirname(args.filename_output)

    # other settings
    camera_distance = 2.732
    elevation = 30
    texture_size = 2

    # load .obj
    vertices, faces = neural_renderer.load_obj(args.filename_input)
    vertices = vertices[None, :, :]  # [num_vertices, XYZ] -> [batch_size=1, num_vertices, XYZ]
    faces = faces[None, :, :]  # [num_faces, 3] -> [batch_size=1, num_faces, 3]

    # create texture [batch_size=1, num_faces, texture_size, texture_size, texture_size, RGB]
    textures = np.ones((1, faces.shape[1], texture_size, texture_size, texture_size, 3), 'float32')

    # to gpu
    chainer.cuda.get_device_from_id(args.gpu).use()
    vertices = chainer.cuda.to_gpu(vertices)
    faces = chainer.cuda.to_gpu(faces)
    textures = chainer.cuda.to_gpu(textures)

    # create renderer
    renderer = neural_renderer.Renderer()

    # draw object
    loop = tqdm.tqdm(range(0, 360, 4))
    for num, azimuth in enumerate(loop):
        loop.set_description('Drawing')
        renderer.eye = neural_renderer.get_points_from_angles(camera_distance, elevation, azimuth)
        images = renderer.render(vertices, faces, textures)  # [batch_size, RGB, image_size, image_size]
        image = images.data.get()[0].transpose((1, 2, 0))  # [image_size, image_size, RGB]
        scipy.misc.toimage(image, cmin=0, cmax=1).save('%s/_tmp_%04d.png' % (working_directory, num))

    # generate gif (need ImageMagick)
    options = '-delay 8 -loop 0 -layers optimize'
    subprocess.call('convert %s %s/_tmp_*.png %s' % (options, working_directory, args.filename_output), shell=True)

    # remove temporary files
    for filename in glob.glob('%s/_tmp_*.png' % working_directory):
        os.remove(filename) 
開發者ID:hiroharu-kato,項目名稱:neural_renderer,代碼行數:48,代碼來源:example1.py

示例12: run

# 需要導入模塊: import neural_renderer [as 別名]
# 或者: from neural_renderer import get_points_from_angles [as 別名]
def run():
    # arguments
    parser = argparse.ArgumentParser()
    parser.add_argument('-eid', '--experiment_id', type=str)
    parser.add_argument('-d', '--directory', type=str, default=DIRECTORY)
    parser.add_argument('-i', '--input_image', type=str)
    parser.add_argument('-oi', '--output_image', type=str)
    parser.add_argument('-oo', '--output_obj', type=str)
    parser.add_argument('-s', '--seed', type=int, default=RANDOM_SEED)
    parser.add_argument('-g', '--gpu', type=int, default=GPU)
    args = parser.parse_args()
    directory_output = os.path.join(args.directory, args.experiment_id)

    # set random seed, gpu
    random.seed(args.seed)
    np.random.seed(args.seed)
    cp.random.seed(args.seed)
    chainer.cuda.get_device(args.gpu).use()

    # load dataset
    image_in = skimage.io.imread(args.input_image).astype('float32') / 255
    if image_in.ndim != 3 or image_in.shape[-1] != 4:
        raise Exception('Input must be a RGBA image.')
    images_in = image_in.transpose((2, 0, 1))[None, :, :, :]
    images_in = chainer.cuda.to_gpu(images_in)

    # setup model & optimizer
    model = models.Model()
    model.to_gpu()
    chainer.serializers.load_npz(os.path.join(directory_output, 'model.npz'), model)

    # reconstruct .obj
    vertices, faces = model.reconstruct(images_in)
    neural_renderer.save_obj(args.output_obj, vertices.data.get()[0], faces.get()[0])

    # render reconstructed shape
    ones = chainer.cuda.to_gpu(np.ones((16,), 'float32'))
    distances = 2.732 * ones
    elevations = 30. * ones
    azimuths = chainer.cuda.to_gpu(np.arange(0, 360, 360. / 16.).astype('float32')) * ones
    viewpoints = neural_renderer.get_points_from_angles(distances, elevations, azimuths)
    images_out = model.reconstruct_and_render(chainer.functions.tile(images_in, (16, 1, 1, 1)), viewpoints)
    image_out = tile_images(images_out.data.get())
    image_out = (image_out * 255).clip(0, 255).astype('uint8')
    skimage.io.imsave(args.output_image, image_out) 
開發者ID:hiroharu-kato,項目名稱:mesh_reconstruction,代碼行數:47,代碼來源:reconstruct.py

示例13: run

# 需要導入模塊: import neural_renderer [as 別名]
# 或者: from neural_renderer import get_points_from_angles [as 別名]
def run():
    # settings
    parser = argparse.ArgumentParser()
    parser.add_argument('-i', '--filename_obj', type=str)
    parser.add_argument('-o', '--filename_output', type=str)
    parser.add_argument('-d', '--output_directory', type=str)
    parser.add_argument('-al', '--adam_lr', type=float, default=0.01)
    parser.add_argument('-ab1', '--adam_beta1', type=float, default=0.9)
    parser.add_argument('-bs', '--batch_size', type=int, default=4)
    parser.add_argument('-ni', '--num_iteration', type=int, default=1000)
    parser.add_argument('-cd', '--camera_distance', type=float, default=2.5)
    parser.add_argument('-ib', '--init_bias', type=str, default='(0,0,0)')
    parser.add_argument('-g', '--gpu', type=int, default=0)
    args = parser.parse_args()
    args.init_bias = tuple([float(v) for v in args.init_bias[1:-1].split(',')])

    # create output directory
    if not os.path.exists(args.output_directory):
        os.makedirs(args.output_directory)

    # setup chainer
    chainer.cuda.get_device_from_id(args.gpu).use()
    cp.random.seed(0)
    np.random.seed(0)

    # setup scene & optimizer
    model = deep_dream_3d.DeepDreamModel(
        args.filename_obj,
        camera_distance=args.camera_distance,
        init_bias=args.init_bias)
    model.to_gpu()
    optimizer = neural_renderer.Adam(alpha=args.adam_lr, beta1=args.adam_beta1)
    optimizer.setup(model)

    # optimization
    loop = tqdm.tqdm(range(args.num_iteration))
    for _ in loop:
        optimizer.target.cleargrads()
        loss = model(args.batch_size)
        loss.backward()
        optimizer.update()
        loop.set_description('Optimizing. Loss %.4f' % loss.data)

    # draw object
    model.renderer.background_color = (1, 1, 1)
    loop = tqdm.tqdm(range(0, 360, 4))
    for num, azimuth in enumerate(loop):
        loop.set_description('Drawing')
        model.renderer.eye = neural_renderer.get_points_from_angles(2.732, 30, azimuth)
        images = model.renderer.render(*model.mesh.get_batch(1))
        image = images.data.get()[0].transpose((1, 2, 0))
        scipy.misc.toimage(image, cmin=0, cmax=1).save('%s/_tmp_%04d.png' % (args.output_directory, num))
    make_gif(args.output_directory, args.filename_output) 
開發者ID:hiroharu-kato,項目名稱:deep_dream_3d,代碼行數:55,代碼來源:run.py


注:本文中的neural_renderer.get_points_from_angles方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。