本文整理匯總了Python中networkx.weakly_connected_components方法的典型用法代碼示例。如果您正苦於以下問題:Python networkx.weakly_connected_components方法的具體用法?Python networkx.weakly_connected_components怎麽用?Python networkx.weakly_connected_components使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類networkx
的用法示例。
在下文中一共展示了networkx.weakly_connected_components方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: plot_wcc_distribution
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import weakly_connected_components [as 別名]
def plot_wcc_distribution(_g, _plot_img):
"""Plot weakly connected components size distributions
:param _g: Transaction graph
:param _plot_img: WCC size distribution image (log-log plot)
:return:
"""
all_wcc = nx.weakly_connected_components(_g)
wcc_sizes = Counter([len(wcc) for wcc in all_wcc])
size_seq = sorted(wcc_sizes.keys())
size_hist = [wcc_sizes[x] for x in size_seq]
plt.figure(figsize=(16, 12))
plt.clf()
plt.loglog(size_seq, size_hist, 'ro-')
plt.title("WCC Size Distribution")
plt.xlabel("Size")
plt.ylabel("Number of WCCs")
plt.savefig(_plot_img)
示例2: left_outer_join
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import weakly_connected_components [as 別名]
def left_outer_join(g, h) -> None:
"""Only add components from the ``h`` that are touching ``g``.
Algorithm:
1. Identify all weakly connected components in ``h``
2. Add those that have an intersection with the ``g``
:param BELGraph g: A BEL graph
:param BELGraph h: A BEL graph
Example usage:
>>> import pybel
>>> g = pybel.from_bel_script('...')
>>> h = pybel.from_bel_script('...')
>>> left_outer_join(g, h)
"""
g_nodes = set(g)
for comp in nx.weakly_connected_components(h):
if g_nodes.intersection(comp):
h_subgraph = subgraph(h, comp)
left_full_join(g, h_subgraph)
示例3: number_weakly_connected_components
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import weakly_connected_components [as 別名]
def number_weakly_connected_components(G):
"""Return the number of weakly connected components in G.
Parameters
----------
G : NetworkX graph
A directed graph.
Returns
-------
n : integer
Number of weakly connected components
See Also
--------
connected_components
Notes
-----
For directed graphs only.
"""
return len(list(weakly_connected_components(G)))
示例4: get_largest_component
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import weakly_connected_components [as 別名]
def get_largest_component(graph: BELGraph) -> BELGraph:
"""Get the giant component of a graph.
:param graph: A BEL graph
"""
biggest_component_nodes = max(nx.weakly_connected_components(graph), key=len)
return subgraph(graph, biggest_component_nodes)
示例5: getNetProp
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import weakly_connected_components [as 別名]
def getNetProp(inGraph):
'''
Function to compute properties
of a given network.
'''
# number of weakly connected components in
# reference network
numCC = len(list(nx.weakly_connected_components(inGraph)))
# number of feedback loop
# in reference network
allCyc = nx.simple_cycles(inGraph)
cycSet = set()
for cyc in allCyc:
if len(cyc) == 3:
cycSet.add(frozenset(cyc))
numFB = len(cycSet)
# number of feedfwd loops
# in reference network
allPaths = []
allPathsSet = set()
for u,v in inGraph.edges():
allPaths = nx.all_simple_paths(inGraph, u, v, cutoff=2)
for p in allPaths:
if len(p) > 2:
allPathsSet.add(frozenset(p))
numFF= len(allPathsSet)
# number of mutual interactions
numMI = 0.0
for u,v in inGraph.edges():
if (v,u) in inGraph.edges():
numMI += 0.5
return numCC, numFB, numFF, numMI
示例6: _remove_non_return_edges
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import weakly_connected_components [as 別名]
def _remove_non_return_edges(self):
"""
Remove those return_from_call edges that actually do not return due to
calling some not-returning functions.
:return: None
"""
for func in self.kb.functions.values():
graph = func.transition_graph
all_return_edges = [(u, v) for (u, v, data) in graph.edges(data=True) if data['type'] == 'return_from_call']
for return_from_call_edge in all_return_edges:
callsite_block_addr, return_to_addr = return_from_call_edge
call_func_addr = func.get_call_target(callsite_block_addr)
if call_func_addr is None:
continue
call_func = self.kb.functions.function(call_func_addr)
if call_func is None:
# Weird...
continue
if call_func.returning is False:
# Remove that edge!
graph.remove_edge(call_func_addr, return_to_addr)
# Remove the edge in CFG
nodes = self.get_all_nodes(callsite_block_addr)
for n in nodes:
successors = self.get_successors_and_jumpkind(n, excluding_fakeret=False)
for successor, jumpkind in successors:
if jumpkind == 'Ijk_FakeRet' and successor.addr == return_to_addr:
self.remove_edge(n, successor)
# Remove all dangling nodes
# wcc = list(networkx.weakly_connected_components(graph))
# for nodes in wcc:
# if func.startpoint not in nodes:
# graph.remove_nodes_from(nodes)
# Private methods - resolving indirect jumps
示例7: nodes_disconnected_from
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import weakly_connected_components [as 別名]
def nodes_disconnected_from(self, node_id):
"""Find nodes disconnected from the input node."""
components = nx.weakly_connected_components(
self._graph)
disconnected_components = []
for comp in components:
if node_id not in comp:
disconnected_components.append(comp)
return set([
n
for comp in disconnected_components
for n in comp
])
示例8: separate_disconnected_components
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import weakly_connected_components [as 別名]
def separate_disconnected_components(self, sort=False):
"""Separate disconnected components into distinct ScaffoldGraph objects.
Parameters
----------
sort : (bool, optional (default=False)) If True sort components in descending order according
to the number of nodes in the subgraph.
"""
components = []
for c in nx.weakly_connected_components(self):
components.append(self.subgraph(c).copy())
if sort:
return sorted(components, key=len, reverse=True)
return components
示例9: biggest_connected_subgraph
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import weakly_connected_components [as 別名]
def biggest_connected_subgraph(G):
if G.is_directed():
comps = nx.weakly_connected_components(G)
else:
comps = nx.connected_components(G)
biggest = max(comps, key=len)
return G.subgraph(biggest)
示例10: is_weakly_connected
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import weakly_connected_components [as 別名]
def is_weakly_connected(G):
"""Test directed graph for weak connectivity.
A directed graph is weakly connected if, and only if, the graph
is connected when the direction of the edge between nodes is ignored.
Parameters
----------
G : NetworkX Graph
A directed graph.
Returns
-------
connected : bool
True if the graph is weakly connected, False otherwise.
See Also
--------
is_strongly_connected
is_semiconnected
is_connected
Notes
-----
For directed graphs only.
"""
if len(G) == 0:
raise nx.NetworkXPointlessConcept(
"""Connectivity is undefined for the null graph.""")
return len(list(weakly_connected_components(G))[0]) == len(G)
示例11: test_weakly_connected_components
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import weakly_connected_components [as 別名]
def test_weakly_connected_components(self):
for G, C in self.gc:
U = G.to_undirected()
w = {frozenset(g) for g in nx.weakly_connected_components(G)}
c = {frozenset(g) for g in nx.connected_components(U)}
assert_equal(w, c)
示例12: connected_components
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import weakly_connected_components [as 別名]
def connected_components(self):
if not self.directed:
return nx.connected_components(self.__graph)
else:
return nx.weakly_connected_components(self.__graph)
示例13: number_weakly_connected_components
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import weakly_connected_components [as 別名]
def number_weakly_connected_components(G):
"""Returns the number of weakly connected components in G.
Parameters
----------
G : NetworkX graph
A directed graph.
Returns
-------
n : integer
Number of weakly connected components
Raises
------
NetworkXNotImplemented:
If G is undirected.
See Also
--------
weakly_connected_components
number_connected_components
number_strongly_connected_components
Notes
-----
For directed graphs only.
"""
return sum(1 for wcc in weakly_connected_components(G))
示例14: weakly_connected_component_subgraphs
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import weakly_connected_components [as 別名]
def weakly_connected_component_subgraphs(G, copy=True):
"""DEPRECATED: Use ``(G.subgraph(c) for c in weakly_connected_components(G))``
Or ``(G.subgraph(c).copy() for c in weakly_connected_components(G))``
"""
msg = "weakly_connected_component_subgraphs is deprecated and will be removed in 2.2" \
"use (G.subgraph(c).copy() for c in weakly_connected_components(G))"
_warnings.warn(msg, DeprecationWarning)
for c in weakly_connected_components(G):
if copy:
yield G.subgraph(c).copy()
else:
yield G.subgraph(c)
示例15: test_connected_raise
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import weakly_connected_components [as 別名]
def test_connected_raise(self):
G = nx.Graph()
assert_raises(NetworkXNotImplemented, nx.weakly_connected_components, G)
assert_raises(NetworkXNotImplemented, nx.number_weakly_connected_components, G)
assert_raises(NetworkXNotImplemented, nx.is_weakly_connected, G)
# deprecated
assert_raises(NetworkXNotImplemented, nx.weakly_connected_component_subgraphs, G)