當前位置: 首頁>>代碼示例>>Python>>正文


Python networkx.topological_sort方法代碼示例

本文整理匯總了Python中networkx.topological_sort方法的典型用法代碼示例。如果您正苦於以下問題:Python networkx.topological_sort方法的具體用法?Python networkx.topological_sort怎麽用?Python networkx.topological_sort使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在networkx的用法示例。


在下文中一共展示了networkx.topological_sort方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: order_build

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import topological_sort [as 別名]
def order_build(graph):
    '''
    Assumes that packages are in graph.
    Builds a temporary graph of relevant nodes and returns it topological sort.

    Relevant nodes selected in a breadth first traversal sourced at each pkg
    in packages.
    '''
    reorder_cyclical_test_dependencies(graph)
    try:
        order = list(nx.topological_sort(graph))
        order.reverse()
    except nx.exception.NetworkXUnfeasible:
        raise ValueError("Cycles detected in graph: %s", nx.find_cycle(graph,
                                                                       orientation='reverse'))

    return order 
開發者ID:conda-forge,項目名稱:staged-recipes,代碼行數:19,代碼來源:compute_build_graph.py

示例2: topological_sort_of_nucleotides

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import topological_sort [as 別名]
def topological_sort_of_nucleotides(graph: nx.DiGraph) -> List[Nucleotide]:
    """
    Perform topological order of the graph

    Parameters
    ----------
    graph

    Returns
    -------
    sorted_nucleotides
        list of nucleotides sorted in topological order
    """
    nucleotides_without_inputs = [
        each_nucleotide for each_nucleotide in graph
        if not list(graph.predecessors(each_nucleotide))]
    nucleotides_without_inputs_sorted = sorted(
        nucleotides_without_inputs, key=lambda x: x.name)
    topological_order = list(nx.topological_sort(graph))
    topological_order_only_with_inputs = [
        each_nucleotide for each_nucleotide in topological_order
        if each_nucleotide not in nucleotides_without_inputs]
    topological_order_sorted = (nucleotides_without_inputs_sorted
                                + topological_order_only_with_inputs)
    return topological_order_sorted 
開發者ID:audi,項目名稱:nucleus7,代碼行數:27,代碼來源:graph_utils.py

示例3: __init__

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import topological_sort [as 別名]
def __init__(self, config: Dict, recipe_folder: str,
                 exclude: List[str] = None, nocatch: bool=False) ->None:
        self.config = config
        self.recipe_folder = recipe_folder
        self.skip = self.load_skips()
        self.exclude = exclude or []
        self.nocatch = nocatch
        self._messages = []

        dag = nx.DiGraph()
        dag.add_nodes_from(str(check) for check in get_checks())
        dag.add_edges_from(
            (str(check), str(check_dep))
            for check in get_checks()
            for check_dep in check.requires
        )
        self.checks_dag = dag

        try:
            self.checks_ordered = nx.topological_sort(dag, reverse=True)
        except nx.NetworkXUnfeasible:
            raise RunTimeError("Cycle in LintCheck requirements!")
        self.reload_checks() 
開發者ID:bioconda,項目名稱:bioconda-utils,代碼行數:25,代碼來源:__init__.py

示例4: CreateGraph

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import topological_sort [as 別名]
def CreateGraph(model, input_quantizers=None,
                default_source_quantizer=cfg.default_source_quantizer,
                debug=False):
  """create graph."""

  K.set_image_data_format("channels_last")

  (graph, source_quantizer_list) = GenerateGraphFromModel(
      model, input_quantizers, default_source_quantizer)
  GraphAddSingleSourceSingleSink(graph)
  GraphRemoveNodeWithNodeType(graph, "Dropout")
  GraphRemoveNodeWithNodeType(graph, "InputLayer")

  scheduler = list(nx.topological_sort(graph))

  if debug:
    for vertex in scheduler[1:-1]:
      for _, v in graph.edges(vertex):
        if v == SINK:
          continue
        print("... calling", graph.nodes[v][
            "layer"][0].name, graph.nodes[v]["type"])

  return (graph, source_quantizer_list) 
開發者ID:google,項目名稱:qkeras,代碼行數:26,代碼來源:qgraph.py

示例5: from_networkx

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import topological_sort [as 別名]
def from_networkx(cls, graph):
        """Take a networkx MultiDigraph and create a new DAGCircuit.

        Args:
            graph (networkx.MultiDiGraph): The graph to create a DAGCircuit
                object from. The format of this MultiDiGraph format must be
                in the same format as returned by to_networkx.

        Returns:
            DAGCircuit: The dagcircuit object created from the networkx
                MultiDiGraph.
        """

        dag = DAGCircuit()
        for node in nx.topological_sort(graph):
            if node.type == 'out':
                continue
            if node.type == 'in':
                dag._add_wire(node.wire)
            elif node.type == 'op':
                dag.apply_operation_back(node.op.copy(), node.qargs,
                                         node.cargs, node.condition)
        return dag 
開發者ID:Qiskit,項目名稱:qiskit-terra,代碼行數:25,代碼來源:dagcircuit.py

示例6: print_pipeline

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import topological_sort [as 別名]
def print_pipeline(self, pipeline_graph):
        """Prints a complete definition of the pipeline with all the tags."""
        for block_name in nx.topological_sort(pipeline_graph):
            block_data = pipeline_graph.nodes(data=True)[block_name]

            print("Block: {}".format(block_name))
            print("Previous Blocks:")
            if 'previous_blocks' in block_data['tags']:
                pprint.pprint(block_data['tags']['previous_blocks'], width=1)
            print("Ins")
            if 'ins' in block_data:
                pprint.pprint(sorted(block_data['ins']), width=1)
            print("Outs")
            if 'outs' in block_data:
                pprint.pprint(sorted(block_data['outs']), width=1)
            print()
            print("-------------------------------")
            print() 
開發者ID:kubeflow-kale,項目名稱:kale,代碼行數:20,代碼來源:core.py

示例7: order_build

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import topological_sort [as 別名]
def order_build(graph):
    '''
    Assumes that packages are in graph.
    Builds a temporary graph of relevant nodes and returns it topological sort.

    Relevant nodes selected in a breadth first traversal sourced at each pkg
    in packages.
    '''
    reorder_cyclical_test_dependencies(graph)
    try:
        order = list(nx.topological_sort(graph))
        order.reverse()
    except nx.exception.NetworkXUnfeasible:
        raise ValueError("Cycles detected in graph: %s", nx.find_cycle(graph))

    return order 
開發者ID:conda,項目名稱:conda-concourse-ci,代碼行數:18,代碼來源:compute_build_graph.py

示例8: to_dendropy_tree

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import topological_sort [as 別名]
def to_dendropy_tree(self, taxon_namespace=None, weighted=False):
        import dendropy

        tree = dendropy.Tree(taxon_namespace=taxon_namespace)

        seed_node = self.roots()[0]

        if weighted:
            def edge_length(par, child):
                return np.abs(self.linkage_dist[par] -
                              self.linkage_dist[child])
        else:
            def edge_length(par, child): return 1.0

        tree_dict = {seed_node: tree.seed_node}
        for clus in nx.topological_sort(self):
            for child in self.successors(clus):
                tree_dict[child] = tree_dict[clus].new_child(
                    edge_length=edge_length(clus, child))

        for clus in self.leaves():
            tree_dict[clus].taxon = taxon_namespace.get_taxon(str(clus))

        return tree 
開發者ID:Hoosier-Clusters,項目名稱:clusim,代碼行數:26,代碼來源:dag.py

示例9: resolve_hook_order

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import topological_sort [as 別名]
def resolve_hook_order(self, hook_tuples: List[HookTuple]) -> List[HookTuple]:
        dag = nx.DiGraph()

        for hook_tuple in hook_tuples:
            dag.add_node(hook_tuple.Hook.name, hook_tuple=hook_tuple)
            for dep_name in hook_tuple.Hook.run_after:
                dag.add_edge(hook_tuple.Hook.name, dep_name)
            for successor_name in hook_tuple.Hook.run_before:
                dag.add_edge(successor_name, hook_tuple.Hook.name)

        try:
            order = reversed(list(nx.topological_sort(dag)))
        except nx.NetworkXUnfeasible:
            msg = 'Circular dependency detected between hooks'
            problem_graph = ', '.join(f'{a} -> {b}'
                                      for a, b in nx.find_cycle(dag))
            raise Exception(f'{msg}: {problem_graph}')

        rv = []
        for hook_name in order:
            hook_tuple = dag.nodes[hook_name].get('hook_tuple')
            if hook_tuple:
                rv.append(hook_tuple)
        return rv 
開發者ID:briancappello,項目名稱:flask-unchained,代碼行數:26,代碼來源:run_hooks_hook.py

示例10: store_queries_in_order

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import topological_sort [as 別名]
def store_queries_in_order(dependency_graph: nx.DiGraph) -> Dict[str, "Future"]:
    """
    Execute queries in an order that ensures each query store is triggered after its dependencies.

    Parameters
    ----------
    dependency_graph : networkx.DiGraph
        Dependency graph of query objects to be stored
    
    Returns
    -------
    dict
        Mapping from query nodes to Future objects representing the store tasks
    """
    ordered_list_of_queries = list(nx.topological_sort(dependency_graph))[::-1]
    logger.debug(f"Storing queries with IDs: {ordered_list_of_queries}")
    store_futures = {}
    for query in ordered_list_of_queries:
        try:
            store_futures[query] = dependency_graph.nodes[query]["query_object"].store()
        except UnstorableQueryError:
            # Some queries cannot be stored
            pass
    return store_futures 
開發者ID:Flowminder,項目名稱:FlowKit,代碼行數:26,代碼來源:dependency_graph.py

示例11: _resolve_dependencies

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import topological_sort [as 別名]
def _resolve_dependencies(G):
    '''
    Traverse the dependency graph starting from resolved nodes
    '''
    context = {}
    for name in nx.topological_sort(G):
        node = G.node[name]
        try:
            context[name] = _render(node, context)

        except Exception as e:
            LOG.debug('Failed to render %s: %s', name, e, exc_info=True)
            msg = 'Failed to render parameter "%s": %s' % (name, six.text_type(e))
            raise ParamException(msg)

    return context 
開發者ID:StackStorm,項目名稱:st2,代碼行數:18,代碼來源:param.py

示例12: generate

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import topological_sort [as 別名]
def generate(self, rescale=True):
        """Generate data from an FCM defined in ``self.init_variables()``.

        Args:
            rescale (bool): rescale the generated data (recommended)

        Returns:
            tuple: (pandas.DataFrame, networkx.DiGraph), respectively the
            generated data and graph.
        """
        if self.cfunctions is None:
            self.init_variables()

        for i in nx.topological_sort(self.g):
            # Root cause

            if not sum(self.adjacency_matrix[:, i]):
                self.data['V{}'.format(i)] = self.cfunctions[i](self.npoints)
            # Generating causes
            else:
                self.data['V{}'.format(i)] = self.cfunctions[i](self.data.iloc[:, self.adjacency_matrix[:, i].nonzero()[0]].values)
            if rescale:
                self.data['V{}'.format(i)] = scale(self.data['V{}'.format(i)].values)

        return self.data, self.g 
開發者ID:FenTechSolutions,項目名稱:CausalDiscoveryToolbox,代碼行數:27,代碼來源:acyclic_graph_generator.py

示例13: is_directed_acyclic_graph

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import topological_sort [as 別名]
def is_directed_acyclic_graph(G):
    """Return True if the graph G is a directed acyclic graph (DAG) or 
    False if not.

    Parameters
    ----------
    G : NetworkX graph
        A graph

    Returns
    -------
    is_dag : bool
        True if G is a DAG, false otherwise
    """
    if not G.is_directed():
        return False
    try:
        topological_sort(G, reverse=True)
        return True
    except nx.NetworkXUnfeasible:
        return False 
開發者ID:SpaceGroupUCL,項目名稱:qgisSpaceSyntaxToolkit,代碼行數:23,代碼來源:dag.py

示例14: test_reverse_topological_sort1

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import topological_sort [as 別名]
def test_reverse_topological_sort1(self):
        DG = nx.DiGraph()
        DG.add_edges_from([(1, 2), (1, 3), (2, 3)])
        assert_equal(nx.topological_sort(DG, reverse=True), [3, 2, 1])
        assert_equal(
            nx.topological_sort_recursive(DG, reverse=True), [3, 2, 1])

        DG.add_edge(3, 2)
        assert_raises(nx.NetworkXUnfeasible,
                      nx.topological_sort, DG, reverse=True)
        assert_raises(nx.NetworkXUnfeasible,
                      nx.topological_sort_recursive, DG, reverse=True)

        DG.remove_edge(2, 3)
        assert_equal(nx.topological_sort(DG, reverse=True), [2, 3, 1])
        assert_equal(
            nx.topological_sort_recursive(DG, reverse=True), [2, 3, 1]) 
開發者ID:SpaceGroupUCL,項目名稱:qgisSpaceSyntaxToolkit,代碼行數:19,代碼來源:test_dag.py

示例15: test_topological_sort3

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import topological_sort [as 別名]
def test_topological_sort3(self):
        DG = nx.DiGraph()
        DG.add_edges_from([(1, i) for i in range(2, 5)])
        DG.add_edges_from([(2, i) for i in range(5, 9)])
        DG.add_edges_from([(6, i) for i in range(9, 12)])
        DG.add_edges_from([(4, i) for i in range(12, 15)])

        def validate(order):
            ok_(isinstance(order, list))
            assert_equal(set(order), set(DG))
            for u, v in combinations(order, 2):
                assert_false(nx.has_path(DG, v, u))
        validate(nx.topological_sort_recursive(DG))
        validate(nx.topological_sort(DG))

        DG.add_edge(14, 1)
        assert_raises(nx.NetworkXUnfeasible, nx.topological_sort, DG)
        assert_raises(nx.NetworkXUnfeasible, nx.topological_sort_recursive, DG) 
開發者ID:SpaceGroupUCL,項目名稱:qgisSpaceSyntaxToolkit,代碼行數:20,代碼來源:test_dag.py


注:本文中的networkx.topological_sort方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。